Suppr超能文献

声换能器通道的门控由生物力学过滤过程塑造。

Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes.

作者信息

Hummel Jennifer, Schöneich Stefan, Kössl Manfred, Scherberich Jan, Hedwig Berthold, Prinz Simone, Nowotny Manuela

机构信息

Institute of Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany.

Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom, and.

出版信息

J Neurosci. 2016 Feb 24;36(8):2377-82. doi: 10.1523/JNEUROSCI.3948-15.2016.

Abstract

Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.

摘要

声信号的机械电转换是动物界所有耳朵听觉的基本过程。在这里,我们在昆虫耳朵(长扁竹节虫)的转换部位进行了体内激光振动测量和电生理测量,以将沿听觉器官的生物力学音调定位与相应感觉细胞的频率调谐联系起来。我们的机械和电生理图谱揭示了一个生物力学滤波过程,该过程显著锐化了神经元反应。我们证明,作用于弦音伸展感受器神经元的通道门控基于声音诱导运动的机械方向性。此外,转换部位的解剖学研究支持了我们关于与刺激相关倾斜的发现。总之,我们能够在昆虫耳朵中表明,通道门控的方向性在周边水平显著锐化了神经元频率选择性,并确定了一种增强在音调组织耳朵中频率辨别的机制。

相似文献

2
Morphological basis for a tonotopic design of an insect ear.昆虫耳朵音频定位设计的形态学基础。
J Comp Neurol. 2017 Jul 1;525(10):2443-2455. doi: 10.1002/cne.24218. Epub 2017 Apr 18.
4
Mechanisms of active hair bundle motion in auditory hair cells.听觉毛细胞中活跃毛束运动的机制。
J Neurosci. 2002 Jan 1;22(1):44-52. doi: 10.1523/JNEUROSCI.22-01-00044.2002.
8
Mechano-electrical transduction: new insights into old ideas.机械电转导:对旧观念的新见解
J Membr Biol. 2006 Feb-Mar;209(2-3):71-88. doi: 10.1007/s00232-005-0834-8. Epub 2006 May 25.
10
Stretch sensitivity of the lateral wall of the auditory outer hair cell from the guinea pig.
Neurosci Lett. 1991 Dec 9;133(2):171-4. doi: 10.1016/0304-3940(91)90562-8.

引用本文的文献

2
Auditory tuning in the bushcricket miniature hearing organ.螽斯微型听觉器官中的听觉调谐
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115779118.
5
Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear.鼓膜耳中噪声致听力损失的生理基础
J Neurosci. 2020 Apr 8;40(15):3130-3140. doi: 10.1523/JNEUROSCI.2279-19.2019. Epub 2020 Mar 6.
6
Mechanics to pre-process information for the fine tuning of mechanoreceptors.用于对机械感受器进行微调的信息预处理机制。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Oct;205(5):661-686. doi: 10.1007/s00359-019-01355-z. Epub 2019 Jul 3.

本文引用的文献

1
Filtering of acoustic signals within the hearing organ.听觉器官内的声信号滤波。
J Neurosci. 2014 Jul 2;34(27):9051-8. doi: 10.1523/JNEUROSCI.0722-14.2014.
4
Lateralization of travelling wave response in the hearing organ of bushcrickets.螽斯听觉器官中行波反应的侧向化
PLoS One. 2014 Jan 21;9(1):e86090. doi: 10.1371/journal.pone.0086090. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验