Hummel Jennifer, Schöneich Stefan, Kössl Manfred, Scherberich Jan, Hedwig Berthold, Prinz Simone, Nowotny Manuela
Institute of Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany.
Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom, and.
J Neurosci. 2016 Feb 24;36(8):2377-82. doi: 10.1523/JNEUROSCI.3948-15.2016.
Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.
声信号的机械电转换是动物界所有耳朵听觉的基本过程。在这里,我们在昆虫耳朵(长扁竹节虫)的转换部位进行了体内激光振动测量和电生理测量,以将沿听觉器官的生物力学音调定位与相应感觉细胞的频率调谐联系起来。我们的机械和电生理图谱揭示了一个生物力学滤波过程,该过程显著锐化了神经元反应。我们证明,作用于弦音伸展感受器神经元的通道门控基于声音诱导运动的机械方向性。此外,转换部位的解剖学研究支持了我们关于与刺激相关倾斜的发现。总之,我们能够在昆虫耳朵中表明,通道门控的方向性在周边水平显著锐化了神经元频率选择性,并确定了一种增强在音调组织耳朵中频率辨别的机制。