Suppr超能文献

通过全血细胞计数分析在初级保健中检测结直肠癌的预测模型的开发与验证:一项双边回顾性研究

Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study.

作者信息

Kinar Yaron, Kalkstein Nir, Akiva Pinchas, Levin Bernard, Half Elizabeth E, Goldshtein Inbal, Chodick Gabriel, Shalev Varda

机构信息

Medial-Research, Kfar Malal, Israel.

Medial-Research, Kfar Malal, Israel

出版信息

J Am Med Inform Assoc. 2016 Sep;23(5):879-90. doi: 10.1093/jamia/ocv195. Epub 2016 Feb 15.

Abstract

OBJECTIVE

The use of risk prediction models grows as electronic medical records become widely available. Here, we develop and validate a model to identify individuals at increased risk for colorectal cancer (CRC) by analyzing blood counts, age, and sex, then determine the model's value when used to supplement conventional screening.

MATERIALS AND METHODS

Primary care data were collected from a cohort of 606 403 Israelis (of whom 3135 were diagnosed with CRC) and a case control UK dataset of 5061 CRC cases and 25 613 controls. The model was developed on 80% of the Israeli dataset and validated using the remaining Israeli and UK datasets. Performance was evaluated according to the area under the curve, specificity, and odds ratio at several working points.

RESULTS

Using blood counts obtained 3-6 months before diagnosis, the area under the curve for detecting CRC was 0.82 ± 0.01 for the Israeli validation set. The specificity was 88 ± 2% in the Israeli validation set and 94 ± 1% in the UK dataset. Detecting 50% of CRC cases, the odds ratio was 26 ± 5 and 40 ± 6, respectively, for a false-positive rate of 0.5%. Specificity for 50% detection was 87 ± 2% a year before diagnosis and 85 ± 2% for localized cancers. When used in addition to the fecal occult blood test, our model enabled more than a 2-fold increase in CRC detection.

DISCUSSION

Comparable results in 2 unrelated populations suggest that the model should generally apply to the detection of CRC in other groups. The model's performance is superior to current iron deficiency anemia management guidelines, and may help physicians to identify individuals requiring additional clinical evaluation.

CONCLUSIONS

Our model may help to detect CRC earlier in clinical practice.

摘要

目的

随着电子病历的广泛应用,风险预测模型的使用日益增加。在此,我们通过分析血细胞计数、年龄和性别来开发并验证一个模型,以识别患结直肠癌(CRC)风险增加的个体,然后确定该模型用于补充传统筛查时的价值。

材料与方法

从606403名以色列人队列(其中3135人被诊断为CRC)以及一个包含5061例CRC病例和25613例对照的英国病例对照数据集中收集初级保健数据。该模型在80%的以色列数据集上开发,并使用其余的以色列和英国数据集进行验证。根据曲线下面积、特异性和几个工作点的比值比来评估性能。

结果

使用诊断前3 - 6个月获得的血细胞计数,以色列验证集检测CRC的曲线下面积为0.82±0.01。以色列验证集的特异性为88±2%,英国数据集为94±1%。在假阳性率为0.5%的情况下,检测到50%的CRC病例时,比值比分别为26±5和40±6。诊断前一年检测到50%病例的特异性为87±2%,局部癌症为85±2%。当与粪便潜血试验一起使用时,我们的模型使CRC检测增加了两倍多。

讨论

在两个不相关人群中得到的可比结果表明,该模型通常应适用于其他群体中CRC的检测。该模型的性能优于当前缺铁性贫血管理指南,可能有助于医生识别需要进一步临床评估的个体。

结论

我们的模型可能有助于在临床实践中更早地检测CRC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e335/4997037/b79b808abe91/ocv195f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验