Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia.
Division of Gastroenterology, Pancreatobilliary and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, University of Indonesia Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia.
Iran J Med Sci. 2024 Oct 1;49(10):610-622. doi: 10.30476/ijms.2024.101219.3400. eCollection 2024 Oct.
Colorectal cancer (CRC) screening is essential to reduce incidence and mortality rates. However, participation in screening remains suboptimal. ColonFlag, a machine learning algorithm using complete blood count (CBC), identifies individuals at high CRC risk using routinely performed tests. This study aims to review the existing literature assessing the efficacy of ColonFlag across diverse populations in multiple countries.
The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) were followed in reporting this systematic review. Searches were conducted on PubMed, Cochrane, ScienceDirect, and Google Scholar for English articles, using keywords related to CBC, machine learning, ColonFlag, and CRC, covering the first development study from 2016 to August 2023. The Cochrane Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias.
A total of 949 articles were identified during the literature search. Ten studies were found to be eligible. ColonFlag yielded Area Under the Curve (AUC) values ranging from 0.736 to 0.82. The sensitivity and specificity ranged from 3.91% to 35.4% and 82.73% to 94%, respectively. The positive predictive values ranged between 2.6% and 9.1%, while the negative predictive values ranged from 97.6% to 99.9%. ColonFlag performed better in shorter time windows, tumors located more proximally, in advanced stages, and in cases of CRC compared to adenoma.
While ColonFlag exhibits low sensitivity compared to established screening methods such as the fecal immunochemical test (FIT) or colonoscopy, its potential to detect CRC before clinical diagnosis suggests an opportunity for identifying more cases than regular screening alone.
结直肠癌(CRC)筛查对于降低发病率和死亡率至关重要。然而,筛查的参与率仍然不理想。ColonFlag 是一种使用全血细胞计数(CBC)的机器学习算法,可使用常规进行的测试来识别 CRC 风险较高的个体。本研究旨在回顾评估 ColonFlag 在多个国家不同人群中的功效的现有文献。
本系统评价按照系统评价和荟萃分析的首选报告项目(PRISMA)进行报告。在 PubMed、Cochrane、ScienceDirect 和 Google Scholar 上使用与 CBC、机器学习、ColonFlag 和 CRC 相关的关键词进行英文文章搜索,涵盖了 2016 年至 2023 年 8 月的第一个开发研究。使用 Cochrane 预测模型风险偏倚评估工具(PROBAST)评估偏倚风险。
在文献搜索过程中共确定了 949 篇文章。发现有 10 项研究符合条件。ColonFlag 的曲线下面积(AUC)值范围为 0.736 至 0.82。灵敏度和特异性范围分别为 3.91%至 35.4%和 82.73%至 94%。阳性预测值在 2.6%至 9.1%之间,而阴性预测值在 97.6%至 99.9%之间。ColonFlag 在较短的时间窗口、位于近端的肿瘤、更晚期的肿瘤以及 CRC 病例中表现优于腺瘤。
虽然 ColonFlag 的灵敏度与粪便免疫化学测试(FIT)或结肠镜检查等既定筛查方法相比较低,但它在临床诊断前检测 CRC 的潜力表明,与常规筛查相比,它有机会识别出更多的病例。