Suppr超能文献

逐次试验错误纠正的阻断并不干扰人类行走中的运动学习。

Blocking trial-by-trial error correction does not interfere with motor learning in human walking.

作者信息

Long Andrew W, Roemmich Ryan T, Bastian Amy J

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and.

Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland.

出版信息

J Neurophysiol. 2016 May 1;115(5):2341-8. doi: 10.1152/jn.00941.2015. Epub 2016 Feb 24.

Abstract

Movements can be learned implicitly in response to new environmental demands or explicitly through instruction and strategy. The former is often studied in an environment that perturbs movement so that people learn to correct the errors and store a new motor pattern. Here, we demonstrate in human walking that implicit learning of foot placement occurs even when an explicit strategy is used to block changes in foot placement during the learning process. We studied people learning a new walking pattern on a split-belt treadmill with and without an explicit strategy through instruction on where to step. When there is no instruction, subjects implicitly learn to place one foot in front of the other to minimize step-length asymmetry during split-belt walking, and the learned pattern is maintained when the belts are returned to the same speed, i.e., postlearning. When instruction is provided, we block expression of the new foot-placement pattern that would otherwise naturally develop from adaptation. Despite this appearance of no learning in foot placement, subjects show similar postlearning effects as those who were not given any instruction. Thus locomotor adaptation is not dependent on a change in action during learning but instead can be driven entirely by an unexpressed internal recalibration of the desired movement.

摘要

运动可以通过对新环境需求的隐性反应来学习,也可以通过指导和策略进行显性学习。前者通常在干扰运动的环境中进行研究,以便人们学会纠正错误并存储新的运动模式。在这里,我们在人类行走中证明,即使在学习过程中使用显性策略来阻止足部位置的变化,足部位置的隐性学习仍然会发生。我们研究了人们在有或没有显性策略的情况下,通过关于步幅位置的指导,在分离带跑步机上学习新的行走模式。当没有指导时,受试者隐性地学会将一只脚放在另一只脚前面,以最小化分离带行走过程中的步长不对称,并且当皮带恢复到相同速度时,即学习后,所学模式得以维持。当提供指导时,我们阻止了新的足部位置模式的表达,否则这种模式会自然地从适应中发展出来。尽管在足部位置上看似没有学习,但受试者表现出与未接受任何指导的受试者相似的学习后效应。因此,运动适应并不依赖于学习过程中动作的改变,而是可以完全由对期望运动的未表达的内部重新校准驱动。

相似文献

1
Blocking trial-by-trial error correction does not interfere with motor learning in human walking.
J Neurophysiol. 2016 May 1;115(5):2341-8. doi: 10.1152/jn.00941.2015. Epub 2016 Feb 24.
2
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
J Neurophysiol. 2015 Jun 1;113(10):3905-14. doi: 10.1152/jn.00779.2014. Epub 2015 Apr 1.
3
Different Error Size During Locomotor Adaptation Affects Transfer to Overground Walking Poststroke.
Neurorehabil Neural Repair. 2018 Dec;32(12):1020-1030. doi: 10.1177/1545968318809921. Epub 2018 Nov 9.
4
Independent voluntary correction and savings in locomotor learning.
J Exp Biol. 2018 Aug 7;221(Pt 15):jeb181826. doi: 10.1242/jeb.181826.
5
Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry.
J Neurophysiol. 2020 Jul 1;124(1):32-39. doi: 10.1152/jn.00083.2020. Epub 2020 May 20.
6
Two ways to save a newly learned motor pattern.
J Neurophysiol. 2015 Jun 1;113(10):3519-30. doi: 10.1152/jn.00965.2014. Epub 2015 Apr 8.
7
Altering attention to split-belt walking increases the generalization of motor memories across walking contexts.
J Neurophysiol. 2020 May 1;123(5):1838-1848. doi: 10.1152/jn.00509.2019. Epub 2020 Apr 1.
8
Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking.
J Neurophysiol. 2021 Feb 1;125(2):344-357. doi: 10.1152/jn.00416.2020. Epub 2020 Dec 9.
9
Concurrent locomotor adaptation and retention to visual and split-belt perturbations.
PLoS One. 2022 Dec 30;17(12):e0279585. doi: 10.1371/journal.pone.0279585. eCollection 2022.
10
Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force.
J Neurophysiol. 2015 Dec;114(6):3255-67. doi: 10.1152/jn.00302.2015. Epub 2015 Sep 30.

引用本文的文献

1
Age and self-selected walking speed impact the generalization of locomotor memories across contexts.
J Neurophysiol. 2025 May 1;133(5):1410-1421. doi: 10.1152/jn.00432.2023. Epub 2025 Feb 24.
2
Exploration-based learning of a stabilizing controller predicts locomotor adaptation.
Nat Commun. 2024 Nov 3;15(1):9498. doi: 10.1038/s41467-024-53416-w.
4
Blending motor learning approaches for short-term adjustments to gait in people with Parkinson disease.
Exp Brain Res. 2024 Dec;242(12):2853-2863. doi: 10.1007/s00221-024-06933-5. Epub 2024 Oct 3.
5
Serial engagement of distinct motor learning mechanisms to alter walking after stroke.
Sci Rep. 2024 Sep 30;14(1):22706. doi: 10.1038/s41598-024-73502-9.
6
Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke.
J Neurophysiol. 2024 Oct 1;132(4):1172-1182. doi: 10.1152/jn.00156.2024. Epub 2024 Sep 4.
8
Reinforcement feedback impairs locomotor adaptation and retention.
Front Behav Neurosci. 2024 Apr 24;18:1388495. doi: 10.3389/fnbeh.2024.1388495. eCollection 2024.
9
Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke.
bioRxiv. 2024 Jul 3:2024.02.04.578807. doi: 10.1101/2024.02.04.578807.
10
Automatic learning mechanisms for flexible human locomotion.
bioRxiv. 2025 Feb 25:2023.09.25.559267. doi: 10.1101/2023.09.25.559267.

本文引用的文献

1
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
J Neurophysiol. 2015 Jun 1;113(10):3905-14. doi: 10.1152/jn.00779.2014. Epub 2015 Apr 1.
2
Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait.
Neurorehabil Neural Repair. 2015 Sep;29(8):786-95. doi: 10.1177/1545968314567149. Epub 2015 Jan 14.
3
Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning.
Prog Brain Res. 2014;210:217-53. doi: 10.1016/B978-0-444-63356-9.00009-1.
4
Explicit and implicit contributions to learning in a sensorimotor adaptation task.
J Neurosci. 2014 Feb 19;34(8):3023-32. doi: 10.1523/JNEUROSCI.3619-13.2014.
5
Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
Neurorehabil Neural Repair. 2014 Mar-Apr;28(3):230-40. doi: 10.1177/1545968313505912. Epub 2013 Nov 15.
6
Effects of gradual versus sudden training on the cognitive demand required while learning a novel locomotor task.
J Mot Behav. 2013;45(5):405-14. doi: 10.1080/00222895.2013.815151. Epub 2013 Aug 6.
7
Cerebellar motor learning: are environment dynamics more important than error size?
J Neurophysiol. 2013 Jul;110(2):322-33. doi: 10.1152/jn.00745.2012. Epub 2013 Apr 17.
8
How does the motor system correct for errors in time and space during locomotor adaptation?
J Neurophysiol. 2012 Jul;108(2):672-83. doi: 10.1152/jn.00391.2011. Epub 2012 Apr 18.
9
Cerebellar contributions to reach adaptation and learning sensory consequences of action.
J Neurosci. 2012 Mar 21;32(12):4230-9. doi: 10.1523/JNEUROSCI.6353-11.2012.
10
Natural error patterns enable transfer of motor learning to novel contexts.
J Neurophysiol. 2012 Jan;107(1):346-56. doi: 10.1152/jn.00570.2011. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验