Suppr超能文献

感知与记忆的相互作用揭示了一种用于感知恒常性的计算策略。

Perception-memory interactions reveal a computational strategy for perceptual constancy.

作者信息

Olkkonen Maria, Saarela Toni P, Allred Sarah R

出版信息

J Vis. 2016;16(3):38. doi: 10.1167/16.3.38.

Abstract

A key challenge for the visual system is to extract constant object properties from incoming sensory information. This information is ambiguous because the same sensory signal can arise from many combinations of object properties and viewing conditions and noisy because of the variability in sensory encoding. The competing accounts for perceptual constancy of surface lightness fall into two classes of model: One derives lightness estimates from border contrasts, and another explicitly infers surface reflectance. To test these accounts, we combined a novel psychophysical task with probabilistic implementations of both models. Observers compared the lightness of two stimuli under a memory demand (a delay between the stimuli), a context change (different surround luminance), or both. Memory biased perceived lightness toward the mean of the whole stimulus ensemble. Context change caused the classical simultaneous lightness contrast effect, in which a target appears lighter against a dark surround and darker against a light surround. These effects were not independent: Combined memory load and context change elicited a bias smaller than predicted assuming an independent combination of biases. Both models explain the memory bias as an effect of prior expectations on perception. Both models also produce a context effect, but only the reflectance model correctly describes the magnitude. The reflectance model, finally, captures the memory-context interaction better than the contrast model, both qualitatively and quantitatively. We conclude that (a) lightness perception is more consistent with reflectance inference than contrast coding and (b) adding a memory demand to a perceptual task both renders it more ecologically valid and helps adjudicate between competing models.

摘要

视觉系统面临的一个关键挑战是从传入的感官信息中提取恒定的物体属性。这些信息具有模糊性,因为相同的感官信号可能由物体属性和观察条件的多种组合产生,并且由于感官编码的变异性而存在噪声。关于表面明度感知恒常性的竞争理论分为两类模型:一类从边界对比度推导明度估计值,另一类明确推断表面反射率。为了检验这些理论,我们将一项新颖的心理物理学任务与这两种模型的概率实现相结合。观察者在记忆需求(刺激之间的延迟)、背景变化(不同的周围亮度)或两者兼有的情况下比较两个刺激的明度。记忆使感知到的明度偏向整个刺激集合的平均值。背景变化导致了经典的同时明度对比效应,即目标在暗背景下显得更亮,在亮背景下显得更暗。这些效应并非相互独立:记忆负荷和背景变化相结合所引发的偏差小于假设偏差独立组合时所预测的偏差。两种模型都将记忆偏差解释为先验期望对感知的影响。两种模型也都产生背景效应,但只有反射率模型正确描述了其大小。最后,反射率模型在定性和定量方面都比对比度模型更好地捕捉了记忆 - 背景相互作用。我们得出结论:(a)明度感知与反射率推断比与对比度编码更一致;(b)在感知任务中增加记忆需求既使其更符合生态学有效性,又有助于在竞争模型之间做出裁决。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验