IEEE Trans Vis Comput Graph. 2017 Feb;23(2):1042-1055. doi: 10.1109/TVCG.2016.2532331. Epub 2016 Feb 19.
We present the design and evaluation of a method for estimating gaze locations during the analysis of static visualizations using crowdsourcing. Understanding gaze patterns is helpful for evaluating visualizations and user behaviors, but traditional eye-tracking studies require specialized hardware and local users. To avoid these constraints, we developed a method called Fauxvea, which crowdsources visualization tasks on the Web and estimates gaze fixations through cursor interactions without eye-tracking hardware. We ran experiments to evaluate how gaze estimates from our method compare with eye-tracking data. First, we evaluated crowdsourced estimates for three common types of information visualizations and basic visualization tasks using Amazon Mechanical Turk (MTurk). In another, we reproduced findings from a previous eye-tracking study on tree layouts using our method on MTurk. Results from these experiments show that fixation estimates using Fauxvea are qualitatively and quantitatively similar to eye tracking on the same stimulus-task pairs. These findings suggest that crowdsourcing visual analysis tasks with static information visualizations could be a viable alternative to traditional eye-tracking studies for visualization research and design.
我们提出了一种使用众包技术估算在分析静态可视化时注视位置的方法的设计和评估。了解注视模式有助于评估可视化和用户行为,但传统的眼动追踪研究需要专门的硬件和本地用户。为了避免这些限制,我们开发了一种名为 Fauxvea 的方法,它通过在 Web 上众包可视化任务并通过光标交互而无需眼动追踪硬件来估算注视点。我们进行了实验来评估我们的方法与眼动追踪数据的注视估计值之间的比较。首先,我们使用亚马逊 Mechanical Turk (MTurk) 评估了三种常见类型的信息可视化和基本可视化任务的众包估计值。在另一个实验中,我们使用 MTurk 上的 Fauxvea 重现了先前在树布局上的眼动追踪研究的发现。这些实验的结果表明,使用 Fauxvea 的注视估计在定性和定量上与同一刺激任务对的眼动追踪相似。这些发现表明,对于可视化研究和设计,使用静态信息可视化进行众包视觉分析任务可能是传统眼动追踪研究的一种可行替代方案。
IEEE Trans Vis Comput Graph. 2016-2-19
IEEE Trans Vis Comput Graph. 2012-12
IEEE Trans Vis Comput Graph. 2010
Percept Mot Skills. 2014-2
J Vis. 2007-12-19
Exp Clin Psychopharmacol. 2019-2
J Nurs Scholarsh. 2016-5
IEEE Trans Vis Comput Graph. 2020-5