Magee Laura A, von Dadelszen Peter, Singer Joel, Lee Terry, Rey Evelyne, Ross Susan, Asztalos Elizabeth, Murphy Kellie E, Menzies Jennifer, Sanchez Johanna, Gafni Amiram, Gruslin Andrée, Helewa Michael, Hutton Eileen, Lee Shoo K, Logan Alexander G, Ganzevoort Wessel, Welch Ross, Thornton Jim G, Moutquin Jean Marie
St. George's University of London, London, UK.
St. George's University Hospitals NHS Trust, London, UK.
Acta Obstet Gynecol Scand. 2016 Jul;95(7):763-76. doi: 10.1111/aogs.12877. Epub 2016 Apr 7.
For women with chronic or gestational hypertension in CHIPS (Control of Hypertension In Pregnancy Study, NCT01192412), we aimed to examine whether clinical predictors collected at randomization could predict adverse outcomes.
This was a planned, secondary analysis of data from the 987 women in the CHIPS Trial. Logistic regression was used to examine the impact of 19 candidate predictors on the probability of adverse perinatal (pregnancy loss or high level neonatal care for >48 h, or birthweight <10th percentile) or maternal outcomes (severe hypertension, preeclampsia, or delivery at <34 or <37 weeks). A model containing all candidate predictors was used to start the stepwise regression process based on goodness of fit as measured by the Akaike information criterion. For face validity, these variables were forced into the model: treatment group ("less tight" or "tight" control), antihypertensive type at randomization, and blood pressure within 1 week before randomization. Continuous variables were represented continuously or dichotomized based on the smaller p-value in univariate analyses. An area-under-the-receiver-operating-curve (AUC ROC) of ≥0.70 was taken to reflect a potentially useful model.
Point estimates for AUC ROC were <0.70 for all but severe hypertension (0.70, 95% CI 0.67-0.74) and delivery at <34 weeks (0.71, 95% CI 0.66-0.75). Therefore, no model warranted further assessment of performance.
CHIPS data suggest that when women with chronic hypertension develop an elevated blood pressure in pregnancy, or formerly normotensive women develop new gestational hypertension, maternal and current pregnancy clinical characteristics cannot predict adverse outcomes in the index pregnancy.
在CHIPS(妊娠高血压控制研究,NCT01192412)中,对于患有慢性高血压或妊娠高血压的女性,我们旨在研究随机分组时收集的临床预测因素是否能够预测不良结局。
这是对CHIPS试验中987名女性数据的一项计划中的二次分析。采用逻辑回归分析19个候选预测因素对围产期不良结局(妊娠丢失或新生儿重症监护>48小时,或出生体重<第10百分位数)或母体结局(重度高血压、先兆子痫,或在<34周或<37周分娩)发生概率的影响。基于赤池信息准则衡量的拟合优度,使用包含所有候选预测因素的模型启动逐步回归过程。为了进行表面效度检验,将以下变量强制纳入模型:治疗组(“宽松”或“严格”控制)、随机分组时的降压药物类型,以及随机分组前1周内的血压。连续变量根据单变量分析中较小的p值进行连续表示或二分法表示。接受者操作特征曲线下面积(AUC ROC)≥0.70被视为反映潜在有用模型。
除重度高血压(0.70,95%可信区间0.67 - 0.74)和<34周分娩(0.71,95%可信区间0.66 - 0.75)外,所有AUC ROC的点估计值均<0.70。因此,没有模型值得进一步评估其性能。
CHIPS数据表明,当患有慢性高血压的女性在孕期血压升高,或既往血压正常的女性出现新的妊娠高血压时,母体和当前妊娠的临床特征无法预测本次妊娠的不良结局。