Ziaco Emanuele, Biondi Franco, Rossi Sergio, Deslauriers Annie
DendroLab, University of Nevada, Reno, NV 89557, USA
DendroLab, University of Nevada, Reno, NV 89557, USA.
Tree Physiol. 2016 Jul;36(7):818-31. doi: 10.1093/treephys/tpw006. Epub 2016 Feb 25.
The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change.
木材形成的时间对于确定环境因素如何影响树木生长至关重要。长寿的狐尾松(Pinus longaeva D. K. Bailey)是北美大盆地的一种基础树线物种,树干年龄可达约5000年。我们研究了树干形成层物候和径向尺寸变异性,以量化环境变量对狐尾松生长的相对影响。在2013年和2014年期间,对内华达气候 - 生态水文评估网络中的两个高海拔林分进行了重复的细胞测量和半小时的测树仪记录。树干径向变化的每日时间序列显示,在胸高处木材形成开始之前,补水和膨胀始于4月下旬至5月初。新木质部的形成始于6月,持续到9月中旬。两个林分之间在物候时间上没有差异,木质部形成开始时的空气和土壤温度阈值也没有差异。一个多元逻辑回归模型突出了空气和土壤温度对木质部形成的单独影响,其相关性通过与水汽压和土壤含水量的相互作用而得到调节。虽然气温在冬季休眠后形成层恢复中起关键作用,但土壤热条件与积雪动态也通过调节植物 - 土壤水分交换来影响木材形成的开始。我们的结果有助于建立对狐尾松气候 - 生长关系的生理理解,其对树木年代学重建的重要性再怎么强调也不为过。此外,树线交错带木质部形成的环境驱动因素通过控制优势物种的生长,最终决定了生态系统对气候变化的响应。