Isozaki O, Kohn L D, Kozak C A, Kimura S
Laboratory of Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.
Mol Endocrinol. 1989 Nov;3(11):1681-92. doi: 10.1210/mend-3-11-1681.
A rat thyroid peroxidase cDNA has been isolated from a FRTL-5 thyroid cell library and sequenced. The cDNA is 2776 base pairs long with an open reading frame of 770 amino acids. By comparison to full-length human thyroid peroxidase cDNA and based on its identification of a 3.2 kilobase mRNA in rat thyroid FRTL-5 cell Northern blots, the rat peroxidase cDNA appears to lack 400-500 base pairs at the 5'-end of the mRNA. It exhibits only a 74% nucleotide and 77% amino acid sequence similarity to human thyroid peroxidase cDNA within the total aligned sequences, although the predicted active site regions are highly conserved (greater than 90-100%). The cDNA has been used to map the thyroid peroxidase gene in mice to chromosome 12 and to compare thyroid peroxidase and thyroglobulin gene expression in FRTL-5 rat thyroid cells. Despite the fact TSH action in both cases is duplicated, and presumably mediated, by cAMP, TSH-induced increases in thyroid peroxidase and thyroglobulin mRNA levels differ. Differences exist with respect to hormone concentration and time. The ability of TSH to increase thyroglobulin, but not thyroid peroxidase mRNA levels, requires insulin, 5% serum, or insulin-like growth factor-I. Insulin or insulin-like growth factor-I alone can increase thyroglobulin mRNA levels as well as or better than TSH but have only a small effect on thyroid peroxidase mRNA levels by comparison to TSH. The ability of TSH to increase thyroglobulin gene expression is readily detected in nuclear run-on assays but not the ability of TSH to increase thyroid peroxidase gene expression. Cycloheximide inhibits TSH-increased thyroglobulin but not peroxidase mRNA levels. Finally, methimazole and phorbol 12-myristate 13-acetate show different effects on TSH-induced increases in thyroglobulin and thyroid peroxidase mRNA levels.
已从FRTL-5甲状腺细胞文库中分离出大鼠甲状腺过氧化物酶cDNA并进行了测序。该cDNA长2776个碱基对,有一个770个氨基酸的开放阅读框。通过与全长人甲状腺过氧化物酶cDNA比较,并基于其在大鼠甲状腺FRTL-5细胞Northern印迹中对3.2千碱基mRNA的鉴定,大鼠过氧化物酶cDNA在mRNA的5'端似乎缺少400 - 500个碱基对。在总比对序列中,它与人类甲状腺过氧化物酶cDNA仅表现出74%的核苷酸和77%的氨基酸序列相似性,尽管预测的活性位点区域高度保守(大于90 - 100%)。该cDNA已被用于将小鼠甲状腺过氧化物酶基因定位到12号染色体,并比较FRTL-5大鼠甲状腺细胞中甲状腺过氧化物酶和甲状腺球蛋白基因的表达。尽管在这两种情况下促甲状腺激素(TSH)的作用都是由环磷酸腺苷(cAMP)重复介导的,但TSH诱导的甲状腺过氧化物酶和甲状腺球蛋白mRNA水平的增加有所不同。在激素浓度和时间方面存在差异。TSH增加甲状腺球蛋白而非甲状腺过氧化物酶mRNA水平的能力需要胰岛素、5%血清或胰岛素样生长因子-I。单独的胰岛素或胰岛素样生长因子-I可以增加甲状腺球蛋白mRNA水平,效果与TSH相同或更好,但与TSH相比,对甲状腺过氧化物酶mRNA水平的影响很小。在核转录分析中很容易检测到TSH增加甲状腺球蛋白基因表达的能力,但检测不到TSH增加甲状腺过氧化物酶基因表达的能力。放线菌酮抑制TSH增加的甲状腺球蛋白但不抑制过氧化物酶mRNA水平。最后,甲巯咪唑和佛波醇12 - 肉豆蔻酸酯13 - 乙酸酯对TSH诱导的甲状腺球蛋白和甲状腺过氧化物酶mRNA水平的增加显示出不同的影响。