An F P, Balantekin A B, Band H R, Bishai M, Blyth S, Butorov I, Cao D, Cao G F, Cao J, Cen W R, Chan Y L, Chang J F, Chang L C, Chang Y, Chen H S, Chen Q Y, Chen S M, Chen Y X, Chen Y, Cheng J H, Cheng J, Cheng Y P, Cherwinka J J, Chu M C, Cummings J P, de Arcos J, Deng Z Y, Ding X F, Ding Y Y, Diwan M V, Dove J, Draeger E, Dwyer D A, Edwards W R, Ely S R, Gill R, Gonchar M, Gong G H, Gong H, Grassi M, Gu W Q, Guan M Y, Guo L, Guo X H, Hackenburg R W, Han R, Hans S, He M, Heeger K M, Heng Y K, Higuera A, Hor Y K, Hsiung Y B, Hu B Z, Hu L M, Hu L J, Hu T, Hu W, Huang E C, Huang H X, Huang X T, Huber P, Hussain G, Jaffe D E, Jaffke P, Jen K L, Jetter S, Ji X P, Ji X L, Jiao J B, Johnson R A, Kang L, Kettell S H, Kohn S, Kramer M, Kwan K K, Kwok M W, Kwok T, Langford T J, Lau K, Lebanowski L, Lee J, Lei R T, Leitner R, Leung K Y, Leung J K C, Lewis C A, Li D J, Li F, Li G S, Li Q J, Li S C, Li W D, Li X N, Li X Q, Li Y F, Li Z B, Liang H, Lin C J, Lin G L, Lin P Y, Lin S K, Ling J J, Link J M, Littenberg L, Littlejohn B R, Liu D W, Liu H, Liu J L, Liu J C, Liu S S, Lu C, Lu H Q, Lu J S, Luk K B, Ma Q M, Ma X Y, Ma X B, Ma Y Q, Martinez Caicedo D A, McDonald K T, McKeown R D, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai H Y, Ning Z, Ochoa-Ricoux J P, Olshevski A, Pan H-R, Park J, Patton S, Pec V, Peng J C, Piilonen L E, Pinsky L, Pun C S J, Qi F Z, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan X C, Shao B B, Steiner H, Sun G X, Sun J L, Tang W, Taychenachev D, Tsang K V, Tull C E, Tung Y C, Viaux N, Viren B, Vorobel V, Wang C H, Wang M, Wang N Y, Wang R G, Wang W, Wang W W, Wang X, Wang Y F, Wang Z, Wang Z, Wang Z M, Wei H Y, Wen L J, Whisnant K, White C G, Whitehead L, Wise T, Wong H L H, Wong S C F, Worcester E, Wu Q, Xia D M, Xia J K, Xia X, Xing Z Z, Xu J Y, Xu J L, Xu J, Xu Y, Xue T, Yan J, Yang C G, Yang L, Yang M S, Yang M T, Ye M, Yeh M, Young B L, Yu G Y, Yu Z Y, Zang S L, Zhan L, Zhang C, Zhang H H, Zhang J W, Zhang Q M, Zhang Y M, Zhang Y X, Zhang Y M, Zhang Z J, Zhang Z Y, Zhang Z P, Zhao J, Zhao Q W, Zhao Y F, Zhao Y B, Zheng L, Zhong W L, Zhou L, Zhou N, Zhuang H L, Zou J H
Institute of Modern Physics, East China University of Science and Technology, Shanghai, China.
University of Wisconsin, Madison, Wisconsin, USA.
Phys Rev Lett. 2016 Feb 12;116(6):061801. doi: 10.1103/PhysRevLett.116.061801.
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
本快报报道了在大亚湾实验中,利用部署在两个近区(有效基线分别为512米和561米)和一个远区(1579米)地下实验厅的六个探测器,对来自六个2.9吉瓦热功率核反应堆的电子反中微子通量和能谱进行的测量。利用217天的数据,在近区和远区实验厅分别探测到296721个和41589个逆β衰变(IBD)候选事例。测量得到的IBD产额为(1.55±0.04)×10^(-18) 厘米²·吉瓦⁻¹·天⁻¹ 或(5.92±0.14)×10^(-43) 厘米²·裂变⁻¹。该通量测量结果与先前的短基线反应堆反中微子实验一致,相对于用休伯-米勒(ILL-沃格尔)裂变反中微子模型预测的通量,为0.946±0.022(0.991±0.023)。在整个能量范围内,测量得到的IBD正电子能谱与两种能谱预测的偏差均超过2σ,在4 - 6兆电子伏之间局部显著性高达约4σ。从测量得到的正电子能谱中提取出IBD反应的反应堆反中微子能谱,用于与模型无关的预测。