Mathieu Sophie, El Khoury Nabil, Rivard Katy, Gélinas Roselle, Goyette Philippe, Paradis Pierre, Nemer Mona, Fiset Céline
Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
Heart Rhythm. 2016 Jun;13(6):1346-54. doi: 10.1016/j.hrthm.2016.02.015. Epub 2016 Feb 24.
Ventricular arrhythmias and sudden cardiac deaths are among the leading causes of mortality in patients with heart failure, and the underlying mechanisms remain incompletely understood. Chronic elevation of angiotensin II (ANGII) is known to be one of the main contributors to heart failure.
We tested whether ANGII can alter ventricular conduction and Na(+) current using transgenic mice with cardiomyocyte-restricted overexpression of ANGII type 1 receptor (AT1R).
We used surface electrocardiograms along with current- and voltage-clamp techniques to characterize the electrophysiological properties of AT1R mice while the underlying regulatory mechanisms were explored using reverse transcription/quantitative polymerase chain reaction, Western blots, and immunofluorescence techniques.
Electrophysiological data indicated that chronic AT1R activation in ventricular myocytes caused a 60% reduction in Na(+) current density that slowed the maximal velocity of the action potential upstroke, leading to a prolongation of the QRS complex. These changes occur independently of cardiac hypertrophy, suggesting a direct role for ANGII/AT1R in slowing ventricular conduction. Western blots demonstrated a selective increase in sarcolemmal protein kinase Cα (PKCα) in AT1R mice, indicating PKCα activation. Furthermore, immunofluorescence analysis showed reorganization of PKCα expression to sarcolemma and colocalization with NaV1.5 in AT1R myocytes. The involvement of PKCα in regulating Na(+) current was subsequently demonstrated in human-induced pluripotent stem cell-derived cardiomyocytes where ANGII treatment reduced Na(+) current density. Concomitant treatment with αV5-3, a PKCα translocation inhibitor peptide, blocked the ANGII effect.
Overall, this study suggests that in mouse and human cardiomyocytes, PKCα is an important mediator of the ANGII-induced reduction in Na(+) current and may contribute to ventricular arrhythmias.
室性心律失常和心源性猝死是心力衰竭患者死亡的主要原因之一,其潜在机制仍未完全明确。已知血管紧张素II(ANGII)的长期升高是导致心力衰竭的主要因素之一。
我们使用心肌细胞特异性过表达血管紧张素II 1型受体(AT1R)的转基因小鼠,来测试ANGII是否能改变心室传导和钠电流。
我们使用体表心电图以及电流钳和电压钳技术来表征AT1R小鼠的电生理特性,同时使用逆转录/定量聚合酶链反应、蛋白质免疫印迹和免疫荧光技术来探索潜在的调节机制。
电生理数据表明,心室肌细胞中AT1R的长期激活导致钠电流密度降低60%,减缓了动作电位上升的最大速度,导致QRS波群延长。这些变化独立于心肌肥厚发生,提示ANGII/AT1R在减慢心室传导中起直接作用。蛋白质免疫印迹显示AT1R小鼠肌膜蛋白激酶Cα(PKCα)选择性增加,表明PKCα被激活。此外,免疫荧光分析显示PKCα表达在AT1R心肌细胞中重新分布到肌膜,并与NaV1.5共定位。随后在人诱导多能干细胞衍生的心肌细胞中证实了PKCα参与调节钠电流,ANGII处理降低了钠电流密度。用PKCα易位抑制肽αV5-3共同处理可阻断ANGII的作用。
总体而言,本研究表明,在小鼠和人类心肌细胞中,PKCα是ANGII诱导钠电流降低的重要介质,可能导致室性心律失常。