Morris Holly S, Estillore Armando D, Laskina Olga, Grassian Vicki H, Tivanski Alexei V
Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States.
Anal Chem. 2016 Apr 5;88(7):3647-54. doi: 10.1021/acs.analchem.5b04349. Epub 2016 Mar 9.
The water uptake behavior of atmospheric aerosol dictates their climate effects. In many studies, aerosol particles are deposited onto solid substrates to measure water uptake; however, the effects of the substrate are not well understood. Furthermore, in some cases, methods used to analyze and quantify water uptake of substrate deposited particles use a two-dimensional (2D) analysis to monitor growth by following changes in the particle diameter with relative humidity (RH). However, this 2D analysis assumes that the droplet grows equally in all directions. If particle growth is not isotropic in height and diameter, this assumption can cause inaccuracies when quantifying hygroscopic growth factors (GFs), where GF for a for a spherical particle is defined as the ratio of the particle diameter at a particular relative humidity divided by the dry particle diameter (typically about 5% RH). However, as shown here, anisotropic growth can occur in some cases. In these cases, a three-dimensional (3D) analysis of the growth is needed. This study introduces a way to quantify the hygroscopic growth of substrate deposited particles composed of model systems relevant to atmospheric aerosols using atomic force microscopy (AFM), which gives information on both the particle height and area and thus a three-dimensional view of each particle. In this study, we compare GFs of submicrometer sized particles composed of single component sodium chloride (NaCl) and malonic acid (MA), as well as binary mixtures of NaCl and MA, and NaCl and nonanoic acid (NA) determined by AFM using area (2D) equivalent diameters, similar to conventional microscopy methods, to GFs determined using volume (3D) equivalent diameter. We also compare these values to GFs determined by a hygroscopic tandem differential mobility analyzer (HTDMA; substrate free, 3D method). It was found that utilizing volume equivalent diameter for quantifying GFs with AFM agreed well with those determined by substrate-free HTDMA method, regardless of particle composition but area equivalent derived GFs varied for different chemical systems. Furthermore, the NaCl and MA mixture was substrate-deposited both wet and dry, revealing that the hydration state of the particle at the time of impaction influences how the particle grows on the substrate upon water uptake. Most importantly, for the binary mixtures it is shown here that different populations of particles can be distinguished with AFM, an individual particle method, whereas HTDMA sees the ensemble average. Overall, this study establishes the methodology of using AFM to accurately quantify the water uptake of individual submicrometer particles at ambient conditions over a wide range of RH values. Furthermore, the importance of single particle AFM analysis is demonstrated.
大气气溶胶的水分吸收行为决定了它们的气候效应。在许多研究中,气溶胶颗粒被沉积在固体基质上以测量水分吸收;然而,基质的影响尚未得到很好的理解。此外,在某些情况下,用于分析和量化沉积在基质上的颗粒的水分吸收的方法使用二维(2D)分析,通过跟踪颗粒直径随相对湿度(RH)的变化来监测生长。然而,这种二维分析假设液滴在所有方向上均匀生长。如果颗粒在高度和直径上的生长不是各向同性的,那么在量化吸湿生长因子(GFs)时,这个假设可能会导致不准确,其中球形颗粒的GF定义为特定相对湿度下的颗粒直径与干燥颗粒直径(通常约为5%RH)的比值。然而,如此处所示,在某些情况下可能会出现各向异性生长。在这些情况下,需要对生长进行三维(3D)分析。本研究介绍了一种使用原子力显微镜(AFM)来量化由与大气气溶胶相关的模型系统组成的沉积在基质上的颗粒的吸湿生长的方法,AFM可提供颗粒高度和面积的信息,从而给出每个颗粒的三维视图。在本研究中,我们比较了由单组分氯化钠(NaCl)和丙二酸(MA)以及NaCl与MA的二元混合物和NaCl与壬酸(NA)组成的亚微米级颗粒的GFs,通过AFM使用面积(2D)等效直径(类似于传统显微镜方法)确定的GFs与使用体积(3D)等效直径确定的GFs。我们还将这些值与通过吸湿串联差分迁移率分析仪(HTDMA;无基质,3D方法)确定的GFs进行比较。结果发现,使用体积等效直径通过AFM量化GFs与无基质HTDMA方法确定的结果非常吻合,无论颗粒组成如何,但面积等效直径得出的GFs在不同化学体系中有所不同。此外,NaCl和MA混合物在干湿两种情况下都沉积在基质上,这表明撞击时颗粒的水合状态会影响颗粒在吸水后在基质上的生长方式。最重要的是,对于二元混合物,此处表明可以用AFM(一种单个颗粒方法)区分不同的颗粒群体,而HTDMA看到的是总体平均值。总体而言,本研究建立了使用AFM在环境条件下、在很宽的RH值范围内准确量化单个亚微米颗粒水分吸收的方法。此外,还证明了单颗粒AFM分析的重要性。