Suppr超能文献

一种用于众包中具有专业知识估计的主动视觉识别的联合高斯过程模型。

A Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing.

作者信息

Long Chengjiang, Hua Gang, Kapoor Ashish

机构信息

Stevens Institute of Technology, Hoboken, NJ 07030, USA.

Microsoft Research, Redmond, WA 98052, USA.

出版信息

Int J Comput Vis. 2016 Jan 1;116(2):136-160. doi: 10.1007/s11263-015-0834-9. Epub 2015 Jun 11.

Abstract

We present a noise resilient probabilistic model for active learning of a Gaussian process classifier from crowds, i.e., a set of noisy labelers. It explicitly models both the overall label noise and the expertise level of each individual labeler with two levels of flip models. Expectation propagation is adopted for efficient approximate Bayesian inference of our probabilistic model for classification, based on which, a generalized EM algorithm is derived to estimate both the global label noise and the expertise of each individual labeler. The probabilistic nature of our model immediately allows the adoption of the prediction entropy for active selection of data samples to be labeled, and active selection of high quality labelers based on their estimated expertise to label the data. We apply the proposed model for four visual recognition tasks, i.e., object category recognition, multi-modal activity recognition, gender recognition, and fine-grained classification, on four datasets with real crowd-sourced labels from the Amazon Mechanical Turk. The experiments clearly demonstrate the efficacy of the proposed model. In addition, we extend the proposed model with the Predictive Active Set Selection Method to speed up the active learning system, whose efficacy is verified by conducting experiments on the first three datasets. The results show our extended model can not only preserve a higher accuracy, but also achieve a higher efficiency.

摘要

我们提出了一种抗噪声概率模型,用于从人群(即一组有噪声的标注者)中主动学习高斯过程分类器。它通过两级翻转模型明确地对整体标签噪声和每个标注者的专业水平进行建模。采用期望传播对我们用于分类的概率模型进行高效的近似贝叶斯推断,并在此基础上推导了一种广义期望最大化(EM)算法,用于估计全局标签噪声和每个标注者的专业水平。我们模型的概率性质立即允许采用预测熵来主动选择要标注的数据样本,并基于估计的专业水平主动选择高质量的标注者来标注数据。我们将所提出的模型应用于四个视觉识别任务,即物体类别识别、多模态活动识别、性别识别和细粒度分类,这些任务基于来自亚马逊土耳其机器人的具有真实众包标签的四个数据集。实验清楚地证明了所提出模型的有效性。此外,我们用预测主动集选择方法扩展了所提出的模型,以加速主动学习系统,通过在前三个数据集上进行实验验证了其有效性。结果表明,我们的扩展模型不仅能保持更高的准确率,还能实现更高的效率。

相似文献

4
Learning From Crowds With Multiple Noisy Label Distribution Propagation.基于多噪声标签分布传播的众包学习
IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6558-6568. doi: 10.1109/TNNLS.2021.3082496. Epub 2022 Oct 27.
6
Active learning with imbalanced multiple noisy labeling.基于不平衡多噪声标注的主动学习
IEEE Trans Cybern. 2015 May;45(5):1081-93. doi: 10.1109/TCYB.2014.2344674. Epub 2014 Aug 14.
8
Collaborative Active Visual Recognition from Crowds: A Distributed Ensemble Approach.协同式众包主动视觉识别:一种分布式集成方法。
IEEE Trans Pattern Anal Mach Intell. 2018 Mar;40(3):582-594. doi: 10.1109/TPAMI.2017.2682082. Epub 2017 Mar 15.
9
Learning With Auxiliary Less-Noisy Labels.辅助少噪声标签学习。
IEEE Trans Neural Netw Learn Syst. 2017 Jul;28(7):1716-1721. doi: 10.1109/TNNLS.2016.2546956. Epub 2016 Apr 6.

引用本文的文献

1
Classification of unlabeled online media.未标记在线媒体的分类。
Sci Rep. 2021 Mar 25;11(1):6908. doi: 10.1038/s41598-021-85608-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验