Krog Robert B, Schatzel Steven J, Dougherty Heather N
Office of Mine Safety and Health Research, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
Int J Min Miner Eng. 2014;5(4):328-349. doi: 10.1504/IJMME.2014.066580.
The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material's permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall's worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated.
美国国家职业安全与健康研究所(NIOSH)利用示踪气体实验和计算机网络通风技术,对长壁工作面和排放通风系统进行了调查。随着长壁工作面的推进,巷道入口的状况以及冒落材料的渗透率和孔隙率变化,决定了排放系统长壁采空区内气流通道的阻力。在一个四盘区长壁开采区进行了一系列现场评估。示踪气体在长壁区段的入口处或长壁工作面上释放,并在护盾线内侧巷道的不同位置进行采样。通过测量到达时间和浓度,确定了活动/已完成盘区及排放系统的气流/瓦斯运动情况,为描绘这些通道提供了实际现场数据。结果表明,随着盘区后退,排放系统持续具备为长壁回风隅角通风的能力。