Wollmer A, Rannefeld B, Stahl J, Melberg S G
Institut für Biochemie der Rheinisch-Westfälischen Technischen Hochschule Aachen.
Biol Chem Hoppe Seyler. 1989 Sep;370(9):1045-53. doi: 10.1515/bchm3.1989.370.2.1045.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)
对于天然胰岛素的六聚体形成,位于中心的六个B13谷氨酸羧基基团聚集在一起产生的排斥势能,通过锌与B10组氨酸结合而被克服。通过定点诱变将B13位的谷氨酸替换为谷氨酰胺,即用具有氢键形成潜力的酰胺基团取代排斥性的羧酸盐,增强了缔合作用并允许形成无金属的六聚体。仅加入锌离子时,这种六聚体会分别经历T6----T3R3或T6----R6结构转变,而在天然的2锌胰岛素六聚体中,这种转变仅由无机阴离子或酚类化合物等添加剂诱导。即使在没有任何金属的情况下,[B13谷氨酰胺]胰岛素六聚体也会被酚类化合物转化,但不会被阴离子转化。胰岛素的结构转变可以通过两种方式实现:通过无机离子,以锌离子为攻击点,锌离子预先存在于未转变的六聚体中;以及通过苯酚,其结合位点仅在转变时才靠近B5组氨酸形成。因此,转变的和未转变的六聚体,即具有螺旋状和伸展的B链N端的分子,必定处于动态平衡之中。苯酚起到楔子的作用,将结构卡在转变状态并捕获锌离子。在没有添加剂的情况下,将转变的2锌[B13谷氨酰胺]胰岛素和无金属的天然胰岛素结合,会导致锌离子重新分布,有利于天然胰岛素,这是动态平衡的结果,也证明了B13电荷对金属结合亲和力的影响。六聚体中单个亚基的转变会导致不良接触。(摘要截断于250字)