Brzović P S, Choi W E, Borchardt D, Kaarsholm N C, Dunn M F
Department of Biochemistry, University of California, Riverside 92521-0129.
Biochemistry. 1994 Nov 8;33(44):13057-69. doi: 10.1021/bi00248a015.
The zinc-insulin hexamer, the storage form of insulin in the pancreas, is an allosteric protein capable of undergoing transitions between three distinct conformational states, designated T6, T3R3, and R6, on the basis of their ligand binding properties, allosteric behavior, and pseudo point symmetries [Kaarsholm, N. C., Ko, H.-C., & Dunn, M. F. (1989) Biochemistry 28, 4427-4435]. The transition from the T-state to the R-state involves a coil-to-helix transition in residues 1-8 of the B-chain wherein the ring of PheB1 is displaced by approximately 30 A. This motion also is accompanied by small changes in the positions of A-chain residues and other B-chain residues. In this paper, one- and two-dimensional (COSY and NOESY) 1H NMR are used to characterize the ligand-induced T to R transitions of wild-type and EB13Q mutant human zinc-insulin hexamers and to make sequence-specific assignments of all resonances in the aromatic region of the R6 complex with resorcinol. The changes in the 1H NMR spectrum (at 500 and 600 MHz) that occur during the T to R transition provide specific signatures of the conformation change. Analysis of the dependence of these spectral changes for the phenol-induced transition as a function of the concentration of phenol establish (1) that the interconversion of T6 and R6 occurs via a third species assigned as T3R3 and (2) that the system shows both negative and positive cooperative allosteric behavior. One- and two-dimensional COSY and NOESY studies show that, in the absence of phenolic compounds, anions act as heterotropic effectors that shift the distribution of hexamer conformations in favor of the R-state with the order of effectiveness, SCN- > N3- >> I- >> Cl-. Analysis of one- and two-dimensional spectra indicate that with wild-type insulin, SCN- and N3- give T3R3 species, whereas the EB13Q mutant gives an R6 species. An allosteric model for the insulin T to R transition based on the structural asymmetry model [Seydoux, F., Malhotra, O. P., & Bernhard, S. A. (1974) CRC Crit. Rev. Biochem. 2, 227-257] is proposed that explains the negative and positive allosteric properties of the system, including the role of T3R3 and the action of homotropic and heterotropic effectors.
锌胰岛素六聚体是胰岛素在胰腺中的储存形式,是一种变构蛋白,能够根据其配体结合特性、变构行为和伪点对称性在三种不同的构象状态(分别称为T6、T3R3和R6)之间发生转变[卡尔绍姆,N.C.,柯,H.-C.,&邓恩,M.F.(1989年)《生物化学》28卷,4427 - 4435页]。从T态到R态的转变涉及B链1 - 8位残基的卷曲到螺旋转变,其中苯丙氨酸B1的环位移约30埃。这种运动还伴随着A链残基和其他B链残基位置的微小变化。在本文中,一维和二维(COSY和NOESY)1H NMR用于表征野生型和EB13Q突变型人锌胰岛素六聚体的配体诱导的T到R转变,并对间苯二酚与R6复合物芳香区域的所有共振进行序列特异性归属。T到R转变过程中1H NMR谱(在500和600 MHz)的变化提供了构象变化的特定特征。分析这些光谱变化对苯酚诱导转变的依赖性作为苯酚浓度的函数,确定(1)T6和R6的相互转化通过指定为T3R3的第三种物质发生,以及(2)该系统表现出负协同和正协同变构行为。一维和二维COSY和NOESY研究表明,在没有酚类化合物的情况下,阴离子作为异源效应剂,以SCN- > N3- >> I- >> Cl-的有效性顺序改变六聚体构象的分布,有利于R态。一维和二维光谱分析表明,对于野生型胰岛素,SCN-和N3-产生T3R3物种,而EB13Q突变体产生R6物种。基于结构不对称模型[塞杜克斯,F.,马尔霍特拉,O.P.,&伯恩哈德,S.A.(1974年)《CRC生物化学评论》2卷,227 - 257页]提出了胰岛素T到R转变的变构模型,该模型解释了系统的负变构和正变构特性,包括T3R3的作用以及同促效应剂和异促效应剂的作用。