Suppr超能文献

癌基因、生长与细胞周期:概述

Oncogenes, growth, and the cell cycle: an overview.

作者信息

Studzinski G P

机构信息

Department of Pathology, UMDNJ-New Jersey Medical School, Newark 07103-2757.

出版信息

Cell Tissue Kinet. 1989 Nov;22(6):405-24. doi: 10.1111/j.1365-2184.1989.tb00226.x.

Abstract

In spite of the complexity of the network of regulatory factors which control the balance between the cell cycle and quiescence, a picture is emerging, if only in outline. Several dozens of protooncogenes participate in growth signal transduction and integration, and, when expressed inappropriately, generate growth signals that may override other cellular controls. Some of these controls are provided by the negatively regulating growth factors, and when these are lost (e.g. by chromosomal deletion), or inactivated (e.g. by binding to an inactive analogue or a DNA viral oncoprotein), cell cycle activity is favoured over quiescence. Embryonic tissues are rapidly growing, so their cells are actively cycling and expression of proto-oncogenes is usually observed (Schuuring et al., 1989). As embryonic and stem cells in adult tissues mature, expression of the active proto-oncogenes is generally lost, but other proto-oncogenes may now be expressed (e.g. Muller et al., 1982). These changes in proto-oncogene expression are not achieved by modulation of transcriptional rates alone; transcriptional attenuation, message processing and stability, and post-translational protein modifications are all known to be important for the regulation of proto-oncogene expression during the transition from growth to the differentiated state. When quiescent cells re-enter the cell cycle approximately 60 genes become up-regulated, including proto-oncogene c-fos, the jun family, and c-myc (Zipfel et al., 1989). Evidence is strong that fos and jun proteins are transcriptional regulators. Terminal differentiation, on the other hand, is sometimes accompanied by the up-regulation of the ras gene family, as well as of several other proto-oncogenes. Proto-oncogene function is essential to the cell cycle traverse, but the genes involved are different in various cell types, and the precise order of oncogene expression may not turn out to be important. This is because cell cycle traverse appears to be more dependent on a critical threshold of growth signals propagated by parallel pathways, rather than on a strict order of predetermined steps. The participation of proto-oncogenes in growth signal transduction offers opportunities for errors, and abnormal growth may result from aberrant oncogene products generating a persistent or excessive growth signal, which shifts the balance of input to the integrating genes from quiescence to an active cell cycle. Thus, cancer may result from an entirely normal processing of growth signals that are abnormal.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

尽管控制细胞周期与静止状态之间平衡的调控因子网络十分复杂,但一幅图景正逐渐浮现,哪怕只是个大概轮廓。几十种原癌基因参与生长信号的转导与整合,若表达不当,就会产生可能凌驾于其他细胞调控机制之上的生长信号。其中一些调控由负调控生长因子提供,当这些因子缺失(如通过染色体缺失)或失活(如通过与无活性类似物或DNA病毒癌蛋白结合)时,细胞周期活性就会比静止状态更受青睐。胚胎组织生长迅速,所以其细胞积极地进行着细胞周期循环,通常能观察到原癌基因的表达(舒林等人,1989年)。随着胚胎和成年组织中的干细胞成熟,活性原癌基因的表达一般会消失,但其他原癌基因可能此时开始表达(如米勒等人,1982年)。原癌基因表达的这些变化并非仅通过转录速率的调节来实现;转录衰减、信使加工与稳定性以及翻译后蛋白质修饰,在从生长状态向分化状态转变过程中对原癌基因表达的调控都很重要,这是众所周知的。当静止细胞重新进入细胞周期时,大约60个基因会上调,包括原癌基因c - fos、jun家族和c - myc(齐普费尔等人,1989年)。有充分证据表明fos和jun蛋白是转录调节因子。另一方面,终末分化有时会伴随着ras基因家族以及其他几种原癌基因的上调。原癌基因功能对细胞周期进程至关重要,但不同细胞类型中涉及的基因不同,原癌基因表达的确切顺序可能并不重要。这是因为细胞周期进程似乎更多地依赖于平行途径传播的生长信号的临界阈值,而非预定步骤的严格顺序。原癌基因参与生长信号转导为出错提供了机会,异常生长可能源于异常的癌基因产物产生持续或过度的生长信号,这会将整合基因的输入平衡从静止状态转变为活跃的细胞周期。因此,癌症可能源于对异常生长信号的完全正常处理过程。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验