Patsula Vitalii, Kosinová Lucie, Lovrić Marija, Ferhatovic Hamzić Lejla, Rabyk Mariia, Konefal Rafal, Paruzel Aleksandra, Šlouf Miroslav, Herynek Vít, Gajović Srećko, Horák Daniel
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
Institute for Clinical and Experimental Medicine , Vídeňská 1958/9, 140 21 Prague 4, Czech Republic.
ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7238-47. doi: 10.1021/acsami.5b12720. Epub 2016 Mar 9.
Monodisperse superparamagnetic Fe3O4 nanoparticles coated with oleic acid were prepared by thermal decomposition of Fe(III) glucuronate. The shape, size, and particle size distribution were controlled by varying the reaction parameters, such as the reaction temperature, concentration of the stabilizer, and type of high-boiling-point solvents. Magnetite particles were characterized by transmission electron microscopy (TEM), as well as electron diffraction (SAED), X-ray diffraction (XRD), dynamic light scattering (DLS), and magnetometer measurements. The particle coating was analyzed by atomic absorption spectroscopy (AAS) and attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FTIR) spectroscopy. To make the Fe3O4 nanoparticles dispersible in water, the particle surface was modified with α-carboxyl-ω-bis(ethane-2,1-diyl)phosphonic acid-terminated poly(3-O-methacryloyl-α-D-glucopyranose) (PMG-P). For future practical biomedical applications, nontoxicity plays a key role, and the PMG-P&Fe3O4 nanoparticles were tested on rat mesenchymal stem cells to determine the particle toxicity and their ability to label the cells. MR relaxometry confirmed that the PMG-P&Fe3O4 nanoparticles had high relaxivity but rather low cellular uptake. Nevertheless, the labeled cells still provided visible contrast enhancement in the magnetic resonance image. In addition, the cell viability was not compromised by the nanoparticles. Therefore, the PMG-P&Fe3O4 nanoparticles have the potential to be used in biomedical applications, especially as contrast agents for magnetic resonance imaging.
通过葡萄糖醛酸铁(III)的热分解制备了包覆油酸的单分散超顺磁性Fe3O4纳米颗粒。通过改变反应参数,如反应温度、稳定剂浓度和高沸点溶剂的类型,来控制颗粒的形状、尺寸和粒径分布。通过透射电子显微镜(TEM)以及电子衍射(SAED)、X射线衍射(XRD)、动态光散射(DLS)和磁力计测量对磁铁矿颗粒进行了表征。通过原子吸收光谱(AAS)和衰减全反射(ATR)傅里叶变换红外光谱(FTIR)对颗粒涂层进行了分析。为了使Fe3O4纳米颗粒可分散在水中,用α-羧基-ω-双(乙烷-2,1-二基)膦酸封端的聚(3-O-甲基丙烯酰基-α-D-吡喃葡萄糖)(PMG-P)对颗粒表面进行了改性。对于未来实际的生物医学应用,无毒起着关键作用,对PMG-P&Fe3O4纳米颗粒在大鼠间充质干细胞上进行了测试,以确定颗粒毒性及其标记细胞的能力。磁共振弛豫测量证实,PMG-P&Fe3O4纳米颗粒具有高弛豫率,但细胞摄取率相当低。然而,标记的细胞在磁共振图像中仍提供了可见的对比度增强。此外,纳米颗粒并未损害细胞活力。因此,PMG-P&Fe3O4纳米颗粒有潜力用于生物医学应用,特别是作为磁共振成像的造影剂。