Yang Haibing, Wei Hui, Ma Guojie, Antunes Mauricio S, Vogt Stefan, Cox Joseph, Zhang Xiao, Liu Xiping, Bu Lintao, Gleber S Charlotte, Carpita Nicholas C, Makowski Lee, Himmel Michael E, Tucker Melvin P, McCann Maureen C, Murphy Angus S, Peer Wendy A
Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA.
Department of Horticulture, Purdue University, West Lafayette, IN, USA.
Plant Biotechnol J. 2016 Oct;14(10):1998-2009. doi: 10.1111/pbi.12557. Epub 2016 Apr 7.
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.
随着全球人口增长,将非粮生物质转化为液体燃料是满足能源需求的一种可持续方法。此前,我们表明铁可以作为催化剂来促进木质纤维素生物质的降解以用于生物燃料生产。然而,将铁催化剂直接添加到生物质预处理过程中存在扩散限制,会增加生物精炼单元操作的成本和复杂性,并且可能对环境产生有害影响。在此,我们展示了一种新策略,可在植物体内使铁在整个细胞壁体积中积累,其中铁在木质纤维素生物质解构过程中充当催化剂。我们设计了由碳水化合物结合模块家族11(CBM11)和铁结合肽(IBP)组成的CBM - IBP融合多肽,用于分泌到拟南芥和水稻细胞壁中。与各自的对照相比,转CBM - IBP基因的拟南芥和水稻植株显示出铁积累和生物质转化显著增加。此外,在温室实验中,转CBM - IBP基因的水稻种子铁浓度增加了35%,种子产量增加了40%。根据世界卫生组织的说法,转CBM - IBP基因的水稻有可能用于解决缺铁问题,缺铁是最常见且分布最广泛的营养失调症。