Suppr超能文献

基于机器学习的图像处理对双着丝粒染色体和单着丝粒染色体进行自动鉴别

Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing.

作者信息

Li Yanxin, Knoll Joan H, Wilkins Ruth C, Flegal Farrah N, Rogan Peter K

机构信息

Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.

Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario.

出版信息

Microsc Res Tech. 2016 May;79(5):393-402. doi: 10.1002/jemt.22642. Epub 2016 Mar 1.

Abstract

Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC detection by extracting features in Giemsa-stained metaphase chromosome images and classifying objects by machine learning (ML). DC detection involves (i) intensity thresholded segmentation of metaphase objects, (ii) chromosome separation by watershed transformation and elimination of inseparable chromosome clusters, fragments and staining debris using a morphological decision tree filter, (iii) determination of chromosome width and centreline, (iv) derivation of centromere candidates, and (v) distinction of DCs from monocentric chromosomes (MC) by ML. Centromere candidates are inferred from 14 image features input to a Support Vector Machine (SVM). Sixteen features derived from these candidates are then supplied to a Boosting classifier and a second SVM which determines whether a chromosome is either a DC or MC. The SVM was trained with 292 DCs and 3135 MCs, and then tested with cells exposed to either low (1 Gy) or high (2-4 Gy) radiation dose. Results were then compared with those of 3 experts. True positive rates (TPR) and positive predictive values (PPV) were determined for the tuning parameter, σ. At larger σ, PPV decreases and TPR increases. At high dose, for σ = 1.3, TPR = 0.52 and PPV = 0.83, while at σ = 1.6, the TPR = 0.65 and PPV = 0.72. At low dose and σ = 1.3, TPR = 0.67 and PPV = 0.26. The algorithm differentiates DCs from MCs, overlapped chromosomes and other objects with acceptable accuracy over a wide range of radiation exposures.

摘要

辐射暴露剂量可通过外周血淋巴细胞中期细胞中的双着丝粒染色体(DC)频率来估算。我们通过提取吉姆萨染色中期染色体图像中的特征并利用机器学习(ML)对物体进行分类,实现了DC检测的自动化。DC检测包括:(i)中期物体的强度阈值分割;(ii)通过分水岭变换进行染色体分离,并使用形态学决策树滤波器消除不可分离的染色体簇、片段和染色碎片;(iii)确定染色体宽度和中心线;(iv)推导着丝粒候选物;(v)通过ML区分DC和单着丝粒染色体(MC)。着丝粒候选物是从输入支持向量机(SVM)的14个图像特征中推断出来的。然后,从这些候选物中导出的16个特征被提供给一个Boosting分类器和第二个SVM,后者确定一条染色体是DC还是MC。SVM使用292个DC和3135个MC进行训练,然后用暴露于低剂量(1 Gy)或高剂量(2 - 4 Gy)辐射的细胞进行测试。然后将结果与3位专家的结果进行比较。针对调谐参数σ确定了真阳性率(TPR)和阳性预测值(PPV)。在较大的σ值时,PPV降低而TPR增加。在高剂量下,当σ = 1.3时,TPR = 0.52且PPV = 0.83,而当σ = 1.6时,TPR = 0.65且PPV = 0.72。在低剂量且σ = 1.3时,TPR = 0.67且PPV = 0.26。该算法在广泛的辐射暴露范围内,能够以可接受的准确度区分DC与MC、重叠染色体和其他物体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验