School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China.
Beijing Huironghe Technology Co., Ltd., Beijing, 101102, China.
Sci Rep. 2023 Feb 6;13(1):2124. doi: 10.1038/s41598-023-28456-9.
Dicentric chromosome analysis is the gold standard for biological dose assessment. To enhance the efficiency of biological dose assessment in large-scale radiation catastrophes, automatic identification of dicentric chromosome images is a promising and objective method. In this paper, an automatic identification method for dicentric chromosome images using two-stage convolutional neural network is proposed based on Giemsa-stained automatic microscopic imaging. To automatically segment the adhesive chromosome masses, a k-means based adaptive image segmentation and watershed segmentation algorithm is applied. The first-stage CNN is used to identify the dicentric chromosome images from all the images and the second-stage CNN works to specifically identify the dicentric chromosome images. This two-stage CNN identification method can effectively detects chromosome images with concealed centromeres, poorly expanded and long-armed entangled chromosomes, and tricentric chromosomes. The novel two-stage CNN method has a chromosome identification accuracy of 99.4%, a sensitivity of 85.8% sensitivity, and a specificity of 99.6%, effectively reducing the false positive rate of dicentric chromosome. The analysis speed of this automatic identification method can be 20 times quicker than manual detection, providing a valuable reference for other image identification situations with small target rates.
双着丝粒染色体分析是生物剂量评估的金标准。为了提高大规模辐射灾难中生物剂量评估的效率,自动识别双着丝粒染色体图像是一种有前途和客观的方法。本文提出了一种基于 Giemsa 染色自动显微镜成像的两阶段卷积神经网络自动识别双着丝粒染色体图像的方法。为了自动分割黏连染色体团块,应用了基于 k-均值的自适应图像分割和分水岭分割算法。第一阶段 CNN 用于从所有图像中识别双着丝粒染色体图像,第二阶段 CNN 用于专门识别双着丝粒染色体图像。这种两阶段 CNN 识别方法可以有效地检测到具有隐蔽着丝粒、扩展不良和长臂纠缠的染色体以及三着丝粒的染色体图像。新的两阶段 CNN 方法具有 99.4%的染色体识别准确率、85.8%的灵敏度和 99.6%的特异性,有效地降低了双着丝粒染色体的假阳性率。这种自动识别方法的分析速度可以比手动检测快 20 倍,为其他小目标率的图像识别情况提供了有价值的参考。