Suppr超能文献

新上市药物比较研究中高维混杂因素汇总分数的比较

Comparison of high-dimensional confounder summary scores in comparative studies of newly marketed medications.

作者信息

Kumamaru Hiraku, Gagne Joshua J, Glynn Robert J, Setoguchi Soko, Schneeweiss Sebastian

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street (Suite 3030), Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street (Suite 3030), Boston, MA, USA.

出版信息

J Clin Epidemiol. 2016 Aug;76:200-8. doi: 10.1016/j.jclinepi.2016.02.011. Epub 2016 Feb 27.

Abstract

OBJECTIVE

To compare confounding adjustment by high-dimensional propensity scores (hdPSs) and historically developed high-dimensional disease risk scores (hdDRSs) in three comparative study examples of newly marketed medications: (1) dabigatran vs. warfarin on major hemorrhage; (2) on death; and (3) cyclooxygenase-2 inhibitors vs. nonselective nonsteroidal anti-inflammatory drugs on gastrointestinal bleeds.

STUDY DESIGN AND SETTING

In each example, we constructed a concurrent cohort of new and old drug initiators using US claims databases. In historical cohorts of old drug initiators, we developed hdDRS models including investigator-specified plus empirically identified variables and using principal component analysis and lasso regression for dimension reduction. We applied the models to the concurrent cohorts to obtain predicted outcome probabilities, which we used for confounding adjustment. We compared the resulting estimates to those from hdPS.

RESULTS

The crude odds ratio (OR) comparing dabigatran to warfarin was 0.52 (95% confidence interval: 0.37-0.72) for hemorrhage and 0.38 (0.26-0.55) for death. Decile stratification yielded an OR of 0.64 (0.46-0.90) for hemorrhage using hdDRS vs. 0.70 (0.49-1.02) for hdPS. ORs for death were 0.69 (0.45-1.06) and 0.73 (0.48-1.10), respectively. The relative performance of hdDRS in the cyclooxygenase-2 inhibitors example was similar.

CONCLUSION

hdDRS achieved similar or better confounding adjustment compared to conventional regression approach but worked slightly less well than hdPS.

摘要

目的

在三个新上市药物的比较研究实例中,比较高维倾向评分(hdPSs)和既往开发的高维疾病风险评分(hdDRSs)对混杂因素的调整作用:(1)达比加群与华法林在大出血方面的比较;(2)在死亡方面的比较;(3)环氧化酶-2抑制剂与非选择性非甾体抗炎药在胃肠道出血方面的比较。

研究设计与背景

在每个实例中,我们使用美国索赔数据库构建了新老药物起始使用者的同期队列。在老药物起始使用者的历史队列中,我们开发了hdDRS模型,包括研究者指定的变量以及通过经验确定的变量,并使用主成分分析和套索回归进行降维。我们将这些模型应用于同期队列以获得预测的结局概率,用于混杂因素调整。我们将所得估计值与hdPS的估计值进行比较。

结果

达比加群与华法林相比,大出血的粗比值比(OR)为0.52(95%置信区间:0.37 - 0.72),死亡的粗OR为0.38(0.26 - 0.55)。十分位数分层分析显示,使用hdDRS时大出血的OR为0.64(0.46 - 0.90),而使用hdPS时为0.70(0.49 - 1.02)。死亡的OR分别为0.69(0.45 - 1.06)和0.73(0.48 - 1.10)。在环氧化酶-2抑制剂实例中,hdDRS的相对表现相似。

结论

与传统回归方法相比,hdDRS在混杂因素调整方面取得了相似或更好的效果,但略逊于hdPS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验