Suppr超能文献

微管蛋白二聚体的可逆解离:亲和力、动力学及稳定单体的证明

Tubulin Dimer Reversible Dissociation: AFFINITY, KINETICS, AND DEMONSTRATION OF A STABLE MONOMER.

作者信息

Montecinos-Franjola Felipe, Schuck Peter, Sackett Dan L

机构信息

From the Program in Physical Biology, Eunice Kennedy Shriver NICHD and

the Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NHBLI), National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Biol Chem. 2016 Apr 22;291(17):9281-94. doi: 10.1074/jbc.M115.699728. Epub 2016 Mar 2.

Abstract

Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54-123) nm Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10(-3)-10(-2) s(-1) Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide).

摘要

微管蛋白是进化上保守的蛋白质,可进行可逆聚合并指导细胞内运输。在微管蛋白家族中,只有αβ-微管蛋白能形成稳定的二聚体。我们使用分析超速离心和荧光各向异性研究了大鼠脑αβ-微管蛋白的单体-二聚体平衡,观察到微管蛋白几乎完全处于单体和二聚体状态。单体微管蛋白在数小时内保持稳定,并能与预先形成的二聚体进行交换,这表明二聚体解离是可逆的。结合沉降速度和荧光各向异性的全局分析得出解离常数Kd = 84(54 - 123)nM。通过分析沉降边界的形状以及标记微管蛋白快速稀释后荧光各向异性的弛豫来测量二聚体解离动力学,得出解离速率常数koff在10⁻³ - 10⁻² s⁻¹范围内。因此,微管蛋白二聚体以适度快速的动力学进行可逆解离。单体-单体缔合对溶液变化(GTP/GDP、尿素和氧化三甲胺)的敏感性远低于二聚体-二聚体缔合。

相似文献

1
Tubulin Dimer Reversible Dissociation: AFFINITY, KINETICS, AND DEMONSTRATION OF A STABLE MONOMER.
J Biol Chem. 2016 Apr 22;291(17):9281-94. doi: 10.1074/jbc.M115.699728. Epub 2016 Mar 2.
3
All tubulins are not alike: Heterodimer dissociation differs among different biological sources.
J Biol Chem. 2019 Jun 28;294(26):10315-10324. doi: 10.1074/jbc.RA119.007973. Epub 2019 May 20.
4
Quantifying the Monomer-Dimer Equilibrium of Tubulin with Mass Photometry.
J Mol Biol. 2020 Nov 20;432(23):6168-6172. doi: 10.1016/j.jmb.2020.10.013. Epub 2020 Oct 15.
5
Reversible dimer dissociation of tubulin S and tubulin detected by fluorescence anisotropy.
Biochemistry. 1992 Oct 13;31(40):9709-16. doi: 10.1021/bi00155a026.
6
Analysis of high-affinity assembly for AMPA receptor amino-terminal domains.
J Gen Physiol. 2012 May;139(5):371-88. doi: 10.1085/jgp.201210770. Epub 2012 Apr 16.
7
Tubulin dimer dissociation detected by fluorescence anisotropy.
Biochemistry. 1989 Jul 25;28(15):6518-24. doi: 10.1021/bi00441a053.
8
Thermodynamics of reversible monomer-dimer association of tubulin.
Biochemistry. 1991 Apr 9;30(14):3511-7. doi: 10.1021/bi00228a023.

引用本文的文献

1
Tubulin isotype regulation maintains asymmetric requirement for α-tubulin over β-tubulin.
J Cell Biol. 2023 Mar 6;222(3). doi: 10.1083/jcb.202202102. Epub 2023 Jan 31.
2
Molecular mechanisms underlying microtubule growth dynamics.
Curr Biol. 2021 May 24;31(10):R560-R573. doi: 10.1016/j.cub.2021.02.035.
3
Protein complexes and neighborhoods driving autophagy.
Autophagy. 2021 Oct;17(10):2689-2705. doi: 10.1080/15548627.2020.1847461. Epub 2020 Nov 13.
4
Quantifying the Monomer-Dimer Equilibrium of Tubulin with Mass Photometry.
J Mol Biol. 2020 Nov 20;432(23):6168-6172. doi: 10.1016/j.jmb.2020.10.013. Epub 2020 Oct 15.
5
Structural basis of the strong cell-cell junction formed by cadherin-23.
FEBS J. 2019 Nov 15;287(11):2328-47. doi: 10.1111/febs.15141.
6
All tubulins are not alike: Heterodimer dissociation differs among different biological sources.
J Biol Chem. 2019 Jun 28;294(26):10315-10324. doi: 10.1074/jbc.RA119.007973. Epub 2019 May 20.
7
Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions.
Nat Protoc. 2017 Sep;12(9):1777-1791. doi: 10.1038/nprot.2017.064. Epub 2017 Aug 3.

本文引用的文献

1
Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data.
Methods Enzymol. 2015;562:109-33. doi: 10.1016/bs.mie.2015.05.001. Epub 2015 Jun 16.
3
The structure of the complex between α-tubulin, TBCE and TBCB reveals a tubulin dimer dissociation mechanism.
J Cell Sci. 2015 May 1;128(9):1824-34. doi: 10.1242/jcs.167387. Epub 2015 Apr 23.
4
Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT.
Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):3-14. doi: 10.1107/S1399004714010372.
5
CetZ tubulin-like proteins control archaeal cell shape.
Nature. 2015 Mar 19;519(7543):362-5. doi: 10.1038/nature13983. Epub 2014 Dec 22.
6
The contribution of αβ-tubulin curvature to microtubule dynamics.
J Cell Biol. 2014 Nov 10;207(3):323-34. doi: 10.1083/jcb.201407095.
7
The tubulin code: molecular components, readout mechanisms, and functions.
J Cell Biol. 2014 Aug 18;206(4):461-72. doi: 10.1083/jcb.201406055.
10
Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity.
Anal Chem. 2014 Mar 18;86(6):3181-7. doi: 10.1021/ac500093m. Epub 2014 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验