Riddet Institute, Massey University, Palmerston North, New Zealand.
Biophys J. 2012 Jul 18;103(2):303-12. doi: 10.1016/j.bpj.2012.05.041. Epub 2012 Jul 17.
The oligomerization of β-lactoglobulin (βLg) has been studied extensively, but with somewhat contradictory results. Using analytical ultracentrifugation in both sedimentation equilibrium and sedimentation velocity modes, we studied the oligomerization of βLg variants A and B over a pH range of 2.5-7.5 in 100 mM NaCl at 25°C. For the first time, to our knowledge, we were able to estimate rate constants (k(off)) for βLg dimer dissociation. At pH 2.5 k(off) is low (0.008 and 0.009 s(-1)), but at higher pH (6.5 and 7.5) k(off) is considerably greater (>0.1 s(-1)). We analyzed the sedimentation velocity data using the van Holde-Weischet method, and the results were consistent with a monomer-dimer reversible self-association at pH 2.5, 3.5, 6.5, and 7.5. Dimer dissociation constants K(D)(2-1) fell close to or within the protein concentration range of ∼5 to ∼45 μM, and at ∼45 μM the dimer predominated. No species larger than the dimer could be detected. The K(D)(2-1) increased as |pH-pI| increased, indicating that the hydrophobic effect is the major factor stabilizing the dimer, and suggesting that, especially at low pH, electrostatic repulsion destabilizes the dimer. Therefore, through Poisson-Boltzmann calculations, we determined the electrostatic dimerization energy and the ionic charge distribution as a function of ionic strength at pH above (pH 7.5) and below (pH 2.5) the isoelectric point (pI∼5.3). We propose a mechanism for dimer stabilization whereby the added ionic species screen and neutralize charges in the vicinity of the dimer interface. The electrostatic forces of the ion cloud surrounding βLg play a key role in the thermodynamics and kinetics of dimer association/dissociation.
β-乳球蛋白(βLg)的寡聚化已被广泛研究,但结果有些矛盾。本研究使用分析超速离心在沉降平衡和沉降速度两种模式下,在 25°C 、pH2.5-7.5 及 100mM NaCl 条件下研究了βLg 变体 A 和 B 的寡聚化。据我们所知,这是首次能够估计βLg 二聚体解离的速率常数(k(off))。在 pH2.5 时 k(off)较低(0.008 和 0.009 s(-1)),但在较高 pH(6.5 和 7.5)时 k(off)明显更高(>0.1 s(-1))。我们使用 van Holde-Weischet 方法分析了沉降速度数据,结果与 pH2.5、3.5、6.5 和 7.5 时单体-二聚体可逆自组装一致。二聚体解离常数 K(D)(2-1)接近或处于蛋白质浓度范围约 5 至约 45 μM,在约 45 μM 时二聚体占主导地位。未检测到比二聚体更大的物质。随着|pH-pI|的增加,K(D)(2-1)增加,表明疏水力是稳定二聚体的主要因素,并表明特别是在低 pH 时,静电排斥会使二聚体不稳定。因此,通过泊松-玻尔兹曼计算,我们确定了静电二聚体化能和离子电荷分布作为 pH 高于(pH7.5)和低于(pH2.5)等电点(pI∼5.3)时离子强度的函数。我们提出了一种二聚体稳定的机制,其中添加的离子物种在二聚体界面附近屏蔽和中和电荷。围绕βLg 的离子云的静电力在二聚体缔合/解离的热力学和动力学中起着关键作用。