Suppr超能文献

蛋白质推断:从蛋白质定量角度看

Protein inference: A protein quantification perspective.

作者信息

He Zengyou, Huang Ting, Liu Xiaoqing, Zhu Peijun, Teng Ben, Deng Shengchun

机构信息

School of Software, Dalian University of Technology, Dalian, China; Key Laboratory for Ubiquitous Network and Service Software of Liaoning, Dalian, China.

College of Computer and Information Science, Northeastern University, USA.

出版信息

Comput Biol Chem. 2016 Aug;63:21-29. doi: 10.1016/j.compbiolchem.2016.02.006. Epub 2016 Feb 13.

Abstract

In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

摘要

在基于质谱的鸟枪法蛋白质组学中,蛋白质定量和蛋白质鉴定是两个主要的计算问题。为了定量蛋白质丰度,必须首先从原始数据中推断出蛋白质列表。然后使用定量方法(如光谱计数)估计相对或绝对蛋白质丰度。到目前为止,大多数研究人员一直分别处理这两个过程。事实上,蛋白质推断问题可以被视为一个特殊的蛋白质定量问题,因为真正存在的蛋白质是那些丰度值不为零的蛋白质。最近一些已发表的论文从概念上讨论了这种可能性。然而,仍然缺乏严格的实验研究来验证这一假设。在本文中,我们研究了使用蛋白质定量方法解决蛋白质推断问题的可行性。蛋白质推断方法旨在确定每个候选蛋白质是否存在于样品中。蛋白质定量方法估计每个推断出的蛋白质的丰度值。自然地,不存在的蛋白质的丰度值应该为零。因此,我们认为蛋白质推断问题可以被视为一个特殊的蛋白质定量问题,即如果一种蛋白质的丰度不为零,则认为它是存在的。基于这一想法,我们的论文尝试使用三种简单的蛋白质定量方法来有效地解决蛋白质推断问题。在六个数据集上的实验结果表明,这三种方法与以前的蛋白质推断算法具有竞争力。这表明将蛋白质推断问题建模为一个特殊的蛋白质定量任务是合理的,这从定量的角度为设计更有效的蛋白质推断算法打开了大门。我们方法的源代码可在以下网址获得:http://code.google.com/p/protein-inference/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验