Suppr超能文献

使用动态对比增强磁共振成像进行治疗反应评估的动态分形特征差异分析

Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI.

作者信息

Wang Chunhao, Subashi Ergys, Yin Fang-Fang, Chang Zheng

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

Med Phys. 2016 Mar;43(3):1335-47. doi: 10.1118/1.4941739.

Abstract

PURPOSE

To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI.

METHODS

A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter K(trans) map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor's mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of K(trans) and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann-Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day.

RESULTS

The tumor mean K(trans) and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification, the achieved accuracies were 93.8% and 93.8% at first and second post-treatment scan days, respectively. In comparison, the classification accuracies using d1 and d2 of K(trans) map were 87.5% and 100% at first and second post-treatment scan days, respectively.

CONCLUSIONS

As quantitative metrics of tumor contrast agent uptake heterogeneity, the selected parameters from the dynamic FSD method accurately captured the therapeutic response in the experiment. The potential application of the proposed method is promising, and its addition to the existing DCE-MRI techniques could improve DCE-MRI performance in early assessment of treatment response.

摘要

目的

开发一种动态分形特征差异(FSD)方法,作为一种新颖的图像纹理分析技术,用于量化肿瘤异质性信息,以通过动态对比增强(DCE)-MRI更好地评估治疗反应。

方法

使用小动物抗血管生成药物治疗实验来验证所提出的方法。将16只植入LS-174T的小鼠随机分为治疗组和对照组(每组n = 8)。所有小鼠在两周内接受三次贝伐单抗(治疗组)或生理盐水(对照组)注射,并在治疗前进行一次和治疗后进行两次DCE-MRI扫描。在所提出的动态FSD方法中,生成动态FSD曲线以表征造影剂摄取过程中的异质性演变,并选择FSD曲线下面积(AUCFSD)和最大增强(MEFSD)作为代表性参数。作为比较,计算药代动力学参数K(trans)图和MR强度增强曲线下面积AUCMR图。除了肿瘤的平均值和变异系数外,还评估了K(trans)图和AUCMR图的峰度、偏度以及经典的Rényi维数d1和d2,以进行异质性评估比较。对于治疗后的扫描,使用Mann-Whitney U检验评估治疗组/对照组之间研究参数的差异。在每次治疗后扫描日,应用支持向量机(SVM)使用研究参数对治疗组/对照组进行分类。

结果

在第二次治疗后扫描中,肿瘤平均K(trans)及其异质性测量值d1和d2在治疗组/对照组之间存在显著差异。相比之下,两次治疗后扫描中AUCFSD和MEFSD的相对值(相对于治疗前值)在治疗组/对照组之间存在显著差异。当使用AUCFSD和MEFSD作为SVM输入进行治疗组/对照组分类时,在第一次和第二次治疗后扫描日分别达到的准确率为93.8%和93.8%。相比之下,使用K(trans)图的d1和d2进行分类时,在第一次和第二次治疗后扫描日的准确率分别为87.5%和100%。

结论

作为肿瘤造影剂摄取异质性的定量指标,动态FSD方法中选择的参数在实验中准确地捕捉到了治疗反应。所提出方法的潜在应用前景广阔,将其添加到现有的DCE-MRI技术中可以提高DCE-MRI在治疗反应早期评估中的性能。

相似文献

2
使用DCE-MRI参数图的多分辨率分形分析对乳腺癌治疗反应进行早期预测。
Tomography. 2019 Mar;5(1):90-98. doi: 10.18383/j.tom.2018.00046.
4
半定量和定量动态对比增强磁共振成像测量可预测宫颈癌的放射反应。
Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):766-73. doi: 10.1016/j.ijrobp.2008.08.023. Epub 2008 Nov 18.
6
DCE-MRI 时间参数对肿瘤血管化异质性定量的影响。
J Magn Reson Imaging. 2019 Dec;50(6):1773-1788. doi: 10.1002/jmri.26753. Epub 2019 Apr 13.
7
8
动态对比增强磁共振乳腺病变分类的时空变化特征。
Artif Intell Med. 2013 Jun;58(2):101-14. doi: 10.1016/j.artmed.2013.03.002. Epub 2013 Mar 30.
9
贝伐单抗和厄洛替尼治疗的非小细胞肺癌患者动态对比增强磁共振成像的阅片者间再现性
Lung Cancer. 2016 Mar;93:20-7. doi: 10.1016/j.lungcan.2015.12.009. Epub 2015 Dec 30.
10
基于多时相分析的乳腺 DCE-MRI 肿瘤增强模式鉴别特征研究。
Med Phys. 2010 Aug;37(8):3940-56. doi: 10.1118/1.3446799.

引用本文的文献

1
肿瘤边缘包含预后信息:肺腺癌患者的影像组学边缘特征分析
Cancers (Basel). 2021 Apr 2;13(7):1676. doi: 10.3390/cancers13071676.
2
影像组学特征是否普遍适用于不同器官?
Cancer Imaging. 2021 Apr 7;21(1):31. doi: 10.1186/s40644-021-00400-y.
3
使用临床常规磁共振成像和肿瘤异质性指数评估原发性肺肿瘤的异质性
Front Oncol. 2021 Jan 8;10:591485. doi: 10.3389/fonc.2020.591485. eCollection 2020.
5
利用放射组学边缘特征预测肺腺癌的肿瘤倍增时间。
Thorac Cancer. 2020 Sep;11(9):2600-2609. doi: 10.1111/1759-7714.13580. Epub 2020 Jul 23.
6
CT 放射组学变异性的临床影响及合适特征选择的建议:以肺癌为例。
Cancer Imaging. 2019 Jul 26;19(1):54. doi: 10.1186/s40644-019-0239-z.
7
胸部肿瘤学中的CT影像组学:技术与临床应用
Nucl Med Mol Imaging. 2018 Apr;52(2):91-98. doi: 10.1007/s13139-017-0506-5. Epub 2017 Dec 18.
8
磁共振成像纹理分析在预测直肠癌新辅助放化疗治疗反应中的应用
Oncotarget. 2017 Dec 22;9(15):11999-12008. doi: 10.18632/oncotarget.23813. eCollection 2018 Feb 23.
9

本文引用的文献

1
术前单次部分乳腺放射治疗:一种具有放射反应生物标志物的新型1期剂量递增方案。
Int J Radiat Oncol Biol Phys. 2015 Jul 15;92(4):846-55. doi: 10.1016/j.ijrobp.2015.03.007. Epub 2015 Mar 14.
2
使用磁共振功能定量成像对放射治疗进行治疗评估。
World J Radiol. 2015 Jan 28;7(1):1-6. doi: 10.4329/wjr.v7.i1.1.
3
乳腺癌放射治疗中使用动态对比增强磁共振成像进行治疗评估的综述。
World J Methodol. 2014 Jun 26;4(2):46-58. doi: 10.5662/wjm.v4.i2.46.
4
采用定量放射组学方法通过无创成像解码肿瘤表型。
Nat Commun. 2014 Jun 3;5:4006. doi: 10.1038/ncomms5006.
6
基于DCE-MRI的异质性小波动力学用于对基因表达型乳腺癌复发风险进行分类
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):295-302. doi: 10.1007/978-3-642-40763-5_37.
7
癌症进化与生态的定量成像。
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.
8
同期立体定向放射外科和贝伐单抗治疗复发性恶性脑胶质瘤:一项前瞻性试验。
Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):873-9. doi: 10.1016/j.ijrobp.2013.04.029. Epub 2013 May 29.
10
基于纹理分析的 18F-FDG PET/CT 成像中肿瘤异质性的量化。
Eur J Nucl Med Mol Imaging. 2013 Jan;40(1):133-40. doi: 10.1007/s00259-012-2247-0. Epub 2012 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验