Vistoli Giulio, Treumann Achim, Zglinicki Thomas von, Miwa Satomi
Department Pharmaceutical Sciences, University of Milan, via Mangiagalli, 25, I-20133 Milan, Italy.
Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK.
Data Brief. 2016 Jan 28;6:865-70. doi: 10.1016/j.dib.2016.01.031. eCollection 2016 Mar.
This data article contains the results of molecular dynamics (MD) simulations performed to assess the stability of the previously computed complex between the hCES1 structure and the Amplex Red (AR) substrate (Miwa et al., 2015) [1] and to compare the dynamic behavior of this complex with that of the corresponding hCES1-deacetylAR product. The study involves both standard molecular dynamics (MD) and steered (SMD) simulations to offer a quantitative comparison of the stability for the two complexes. With regard the standard MD runs, the data article graphically reports the r.m.s.d. profile of the ligand׳s atoms as well as the dynamic behavior of key contacts involving the catalytic Ser221 residue. The SMD simulations provide a comparison of the pull forces required to undock the two ligands and reveal that Van der Waals and hydrophobic interactions play a key role in complex stabilization.
本数据文章包含为评估先前计算的hCES1结构与Amplex Red(AR)底物之间的复合物(Miwa等人,2015年)[1]的稳定性,并将该复合物的动力学行为与相应的hCES1-脱乙酰AR产物的动力学行为进行比较而进行的分子动力学(MD)模拟结果。该研究涉及标准分子动力学(MD)和引导分子动力学(SMD)模拟,以对两种复合物的稳定性进行定量比较。关于标准MD运行,数据文章以图形方式报告了配体原子的均方根偏差(r.m.s.d.)曲线以及涉及催化性丝氨酸221残基的关键接触的动力学行为。SMD模拟提供了使两种配体解离所需的拉力的比较,并揭示了范德华力和疏水相互作用在复合物稳定中起关键作用。