Chavan Vivek, Agarwal Chhavi, Pandey A K
Radiochemistry Division, Bhabha Atomic Research Centre (BARC) , Trombay, Mumbai 400085, India.
Anal Chem. 2016 Apr 5;88(7):3796-803. doi: 10.1021/acs.analchem.5b04827. Epub 2016 Mar 11.
Pore-filled membranes with scintillating properties have been synthesized for sensing α-emitting radionuclides. The membranes have been prepared by in situ UV-initiator-induced polymerization of monomer bis[2-(methacryloxy)ethyl] phosphate in pores of the host membranes, poly(propylene) and poly(ethersulfone). The polymerization has been carried out in the presence of scintillating molecules, 2,5-diphenyloxazole. These scintillating molecules are physically trapped in the thus formed microgel in the membrane. Much higher α-scintillation efficiency has been obtained for the (241)Am-loaded poly(ethersulfone)-based grafted membrane compared to poly(propylene)-based membrane. This was attributed to the aromatic backbone of the poly(ethersulfone) membrane. The scintillation response of poly(ethersulfone)-based membranes has been found to be linear over the range of (241)Am activity studied. The pore-filled scintillating membranes have been found to be selective toward Pu(4+) ions at higher HNO3 concentration compared to Am(3+). The analytical performance of the pore-filled scintillating membranes has been evaluated. The membranes have been found to be stable and reusable. The scintillating membrane with optimized composition has been applied for quantification of Pu in a soil sample.