Suppr超能文献

用于高击穿强度聚合物薄膜电容器的嵌段共聚物的定向自组装。

Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

机构信息

Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States.

Air Force Research Laboratory, Wright Patterson Air Force Base , Dayton, Ohio 45433, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Mar;8(12):7966-76. doi: 10.1021/acsami.5b11851. Epub 2016 Mar 18.

Abstract

Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

摘要

新兴的快速充放电、高功率、轻量和灵活电子产品的需求要求使用具有高能量密度的聚合物薄膜基固态电容器。薄膜电容器的快速充放电率在微秒量级,无法与较慢充电的传统电池、超级电容器和相关混合技术相媲美。然而,聚合物薄膜电容器的当前能量密度无法满足不断增长的需求,如果能提高聚合物薄膜的击穿强度(EBD)和介电常数(εr),则可以显著提高其能量密度。共挤出的两均聚物组件多层膜在这方面显示出很大的潜力,其击穿强度(EBD)高于组件聚合物。多层膜还可以帮助整合除储能以外的功能特性,例如增强的光学、机械、热和阻隔性能。在这项工作中,我们报告了使用软剪切驱动高度取向的自组装层状两亲性嵌段共聚物(BCP)来实现多层、多组分嵌段共聚物介电膜(BCDF),这是这种重要的自组装材料的一种新应用。PS-b-PMMA 模型体系的结果表明,与无序铸膜相比,自组装多层层状嵌段共聚物膜的击穿强度(EBD)提高了约 50%,表明击穿对嵌段共聚物的纳米结构非常敏感。EBD 的增强归因于“阻挡效应”,其中层状嵌段组件之间的多个界面通过薄膜充当电介质击穿的阻挡层。EBD 的增加对应于使用简单的定向自组装策略,储能能力提高了一倍以上。这种方法为设计高能量密度介电材料开辟了一个新的纳米材料范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验