Petitjean Claire, Setiabakti Natasha M, Mountford Jessica K, Arthur Jane F, Ellis Sarah, Hamilton Justin R
a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia.
c School of Animal Biology , The University of Western Australia , Perth , Australia.
Platelets. 2016 Jul;27(5):402-9. doi: 10.3109/09537104.2016.1145202. Epub 2016 Mar 4.
The physiological functions and cellular signaling of Class II phosphoinositide 3-kinases (PI3Ks) remain largely unknown. Platelets express two Class II PI3Ks: PI3KC2α and PI3KC2β. PI3KC2α deficiency was recently reported to cause disruption of the internal membrane reserve structure of platelets (open canalicular system, OCS) that results in dysregulated platelet adhesion and impaired arterial thrombosis in vivo. Notably, these effects on platelets occurred despite normal agonist-induced 3-phosphorylated phosphoinositide (3-PPI) production and cellular activation in PI3KC2α-deficient platelets. However, the potential compensatory actions of PI3KC2β in platelets have not yet been investigated. Here, we report the first mice deficient in both PI3KC2α and PI3KC2β (no Class II PI3Ks in platelets) and reveal a nonredundant role for PI3KC2α in mouse platelet structure and function. Specifically, we show that the disrupted OCS and impaired thrombus stability observed in PI3KC2α-deficient platelets does not occur in PI3KC2β-deficient platelets and is not exaggerated in platelets taken from mice deficient in both enzymes. Furthermore, detailed examination of 3-PPI production in platelets from this series of mice revealed no changes in either unactivated or activated platelets, including those with a complete lack of Class II PI3Ks. These findings indicate a nonredundant role for PI3KC2α in regulating platelet structure and function, and suggest that Class II PI3Ks do not significantly contribute to the acute agonist-induced production of 3-PPIs in these cells.
II类磷酸肌醇3-激酶(PI3Ks)的生理功能和细胞信号传导在很大程度上仍然未知。血小板表达两种II类PI3Ks:PI3KC2α和PI3KC2β。最近有报道称,PI3KC2α缺乏会导致血小板内膜储备结构(开放小管系统,OCS)破坏,从而导致体内血小板黏附失调和动脉血栓形成受损。值得注意的是,尽管PI3KC2α缺陷型血小板中激动剂诱导的3-磷酸化磷酸肌醇(3-PPI)产生和细胞活化正常,但对血小板仍产生了这些影响。然而,PI3KC2β在血小板中的潜在代偿作用尚未得到研究。在此,我们报道了首例同时缺乏PI3KC2α和PI3KC2β的小鼠(血小板中无II类PI3Ks),并揭示了PI3KC2α在小鼠血小板结构和功能中的非冗余作用。具体而言,我们发现PI3KC2α缺陷型血小板中观察到的OCS破坏和血栓稳定性受损在PI3KC2β缺陷型血小板中并未出现,并且在双酶缺陷型小鼠的血小板中也未加剧。此外,对这一系列小鼠血小板中3-PPI产生的详细检查显示,未活化或活化的血小板,包括完全缺乏II类PI3Ks的血小板,均未发生变化。这些发现表明PI3KC2α在调节血小板结构和功能中具有非冗余作用,并表明II类PI3Ks对这些细胞中急性激动剂诱导的3-PPIs产生没有显著贡献。