Suppr超能文献

基因组信息的维度及其对基因组预测的影响。

The Dimensionality of Genomic Information and Its Effect on Genomic Prediction.

作者信息

Pocrnic Ivan, Lourenco Daniela A L, Masuda Yutaka, Legarra Andres, Misztal Ignacy

机构信息

Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602

Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602.

出版信息

Genetics. 2016 May;203(1):573-81. doi: 10.1534/genetics.116.187013. Epub 2016 Mar 4.

Abstract

The genomic relationship matrix (GRM) can be inverted by the algorithm for proven and young (APY) based on recursion on a random subset of animals. While a regular inverse has a cubic cost, the cost of the APY inverse can be close to linear. Theory for the APY assumes that the optimal size of the subset (maximizing accuracy of genomic predictions) is due to a limited dimensionality of the GRM, which is a function of the effective population size (Ne). The objective of this study was to evaluate these assumptions by simulation. Six populations were simulated with approximate effective population size (Ne) from 20 to 200. Each population consisted of 10 nonoverlapping generations, with 25,000 animals per generation and phenotypes available for generations 1-9. The last 3 generations were fully genotyped assuming genome length L = 30. The GRM was constructed for each population and analyzed for distribution of eigenvalues. Genomic estimated breeding values (GEBV) were computed by single-step GBLUP, using either a direct or an APY inverse of GRM. The sizes of the subset in APY were set to the number of the largest eigenvalues explaining x% of variation (EIGx, x = 90, 95, 98, 99) in GRM. Accuracies of GEBV for the last generation with the APY inverse peaked at EIG98 and were slightly lower with EIG95, EIG99, or the direct inverse. Most information in the GRM is contained in ∼NeL largest eigenvalues, with no information beyond 4NeL Genomic predictions with the APY inverse of the GRM are more accurate than by the regular inverse.

摘要

基因组关系矩阵(GRM)可以通过基于对动物随机子集的递归的经证明和年轻个体算法(APY)求逆。虽然常规求逆的计算量是立方级的,但APY求逆的计算量可以接近线性。APY理论假设子集的最优大小(使基因组预测准确性最大化)是由于GRM的维度有限,而GRM的维度是有效种群大小(Ne)的函数。本研究的目的是通过模拟评估这些假设。模拟了六个有效种群大小(Ne)近似从20到200的群体。每个群体由10个不重叠的世代组成,每代有25000只动物,并且第1 - 9代有表型数据。假设基因组长度L = 30,对最后三代进行全基因组分型。为每个群体构建GRM并分析其特征值分布。基因组估计育种值(GEBV)通过单步GBLUP计算,使用GRM的直接求逆或APY求逆。APY中子集的大小设置为解释GRM中x%变异的最大特征值数量(EIGx,x = 90、95、98、99)。使用APY求逆时,最后一代GEBV的准确性在EIG98时达到峰值,在EIG95、EIG99或直接求逆时略低。GRM中的大部分信息包含在约NeL个最大特征值中,4NeL之外没有信息。使用GRM的APY求逆进行基因组预测比常规求逆更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b2c/4858800/bc60ffffbad7/573fig1.jpg

相似文献

1
The Dimensionality of Genomic Information and Its Effect on Genomic Prediction.
Genetics. 2016 May;203(1):573-81. doi: 10.1534/genetics.116.187013. Epub 2016 Mar 4.
3
Incorporation of causative quantitative trait nucleotides in single-step GBLUP.
Genet Sel Evol. 2017 Jul 26;49(1):59. doi: 10.1186/s12711-017-0335-0.
6
Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size.
Genetics. 2016 Feb;202(2):401-9. doi: 10.1534/genetics.115.182089. Epub 2015 Nov 19.

引用本文的文献

1
Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression.
Front Syst Biol. 2024 Apr 9;4:1284668. doi: 10.3389/fsysb.2024.1284668. eCollection 2024.
2
Genetic parameters and genomic prediction of egg production traits in ducks.
Poult Sci. 2025 Jul 3;104(10):105510. doi: 10.1016/j.psj.2025.105510.
3
Toward a general framework for AI-enabled prediction in crop improvement.
Theor Appl Genet. 2025 Jun 12;138(7):151. doi: 10.1007/s00122-025-04928-6.
4
Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.
Front Genet. 2025 Apr 30;16:1549284. doi: 10.3389/fgene.2025.1549284. eCollection 2025.
10
Short Communication: Reduced GBLUP equations to core animals in the algorithm for proven and young (APY).
Vet Anim Sci. 2024 Jan 4;23:100334. doi: 10.1016/j.vas.2024.100334. eCollection 2024 Mar.

本文引用的文献

3
Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size.
Genetics. 2016 Feb;202(2):401-9. doi: 10.1534/genetics.115.182089. Epub 2015 Nov 19.
5
Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus.
J Anim Sci. 2015 Jun;93(6):2653-62. doi: 10.2527/jas.2014-8836.
7
Is the use of formulae a reliable way to predict the accuracy of genomic selection?
J Anim Breed Genet. 2015 Jun;132(3):207-17. doi: 10.1111/jbg.12123. Epub 2014 Nov 7.
9
Using recursion to compute the inverse of the genomic relationship matrix.
J Dairy Sci. 2014;97(6):3943-52. doi: 10.3168/jds.2013-7752. Epub 2014 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验