Suppr超能文献

在基因组全基因关联研究中应用针对已证实和年轻个体的算法,揭示了内洛尔牛关键性状的高多基因性。

Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.

作者信息

Ogunbawo Adebisi R, Hidalgo Jorge, Mulim Henrique A, Carrara Eula R, Ventura Henrique T, Souza Nadson O, Lourenco Daniela, Oliveira Hinayah R

机构信息

Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.

Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States.

出版信息

Front Genet. 2025 Apr 30;16:1549284. doi: 10.3389/fgene.2025.1549284. eCollection 2025.

Abstract

BACKGROUND

Identifying genomic regions associated with traits of interest and their biological processes provides valuable insights into the phenotypic variability of these traits. This study aimed to identify candidate genes and genomic regions associated with 16 traits currently evaluated by the Brazilian Association of Zebu Breeders (ABCZ). These traits include reproductive traits such as age at first calving (AFC), stayability (STAY), and scrotal circumference at 365 (SC365) and 450 days (SC450). Growth traits include birthweight (BW), expected progeny difference for weight at 120days of age (EPD120), as well as weight at 120 (W120), 210 (W210), 365 (W365), and 450 days of age (W450). Carcass traits include body conformation (BC), finishing score (FS), marbling (MARB), muscularity (MUSC), finishing precocity (FP), and ribeye area (REA).

METHODS

A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). Subsequently, the SNP solutions were estimated by back-solving the Genomic Estimated Breeding Values (GEBVs) predicted by ABCZ using the single-step GBLUP method. Genomic regions were identified using sliding windows of 175 consecutive SNPs, and the top 1% genomic windows, ranked based on their proportion of the additive genetic variance, were used to annotate positional candidate genes and genomic regions associated with each of the 16 traits.

RESULTS

The top 1% windows for all traits explained between 2.779% (STAY) to 3.158% (FP) of the additive genetic variance, highlighting the polygenic nature of these traits. Functional analysis of the candidate genes and genomic regions provided valuable insights into the genetic architecture underlying these traits in Nellore cattle. For instance, our results revealed genes with important functions for each trait, such as (plays a key role for the endometrial epithelium) identified for AFC, (associated with morphological development and tissue differentiation) identified for BW, among others.

CONCLUSION

We identified genomic regions and candidate genes, some of which have been previously reported in the literature, while others are novel discoveries that warrant further investigation. These findings contribute to gene prioritization efforts, facilitating the identification of functional candidate genes that can enhance genomic selection strategies for economically important traits in Nellore cattle.

摘要

背景

识别与感兴趣的性状及其生物学过程相关的基因组区域,可为深入了解这些性状的表型变异性提供有价值的见解。本研究旨在识别与巴西瘤牛养殖者协会(ABCZ)目前评估的16个性状相关的候选基因和基因组区域。这些性状包括繁殖性状,如初产年龄(AFC)、留种率(STAY)以及365天(SC365)和450天(SC450)时的阴囊周长。生长性状包括出生体重(BW)、120日龄体重的预期后代差异(EPD120),以及120(W120)、210(W210)、365(W365)和450日龄(W450)时的体重。胴体性状包括体型(BC)、育肥评分(FS)、大理石花纹(MARB)、肌肉度(MUSC)、育肥早熟性(FP)和眼肌面积(REA)。

方法

本研究使用了一个数据集,该数据集包含304,782头经过基因分型的内洛尔牛,共437,650个单核苷酸多态性(SNP,经过质量控制后)。在PREGSF90软件中实现的已验证和年轻动物算法(APY),用于使用36,000头核心动物计算矩阵(该矩阵解释了基因组矩阵中98%的方差)。随后,通过反解ABCZ使用单步GBLUP方法预测的基因组估计育种值(GEBV)来估计SNP解决方案。使用175个连续SNP的滑动窗口来识别基因组区域,基于其加性遗传方差比例排名前1%的基因组窗口,用于注释与16个性状中的每一个相关的位置候选基因和基因组区域。

结果

所有性状的前1%窗口解释了2.779%(STAY)至3.158%(FP)的加性遗传方差,突出了这些性状的多基因性质。对候选基因和基因组区域的功能分析,为内洛尔牛这些性状背后的遗传结构提供了有价值的见解。例如,我们的结果揭示了对每个性状具有重要功能的基因,如为AFC鉴定出的(在内膜上皮中起关键作用),为BW鉴定出的(与形态发育和组织分化相关)等。

结论

我们识别出了基因组区域和候选基因,其中一些先前已在文献中报道,而其他一些则是需要进一步研究的新发现。这些发现有助于基因优先级排序工作,便于识别可增强内洛尔牛经济重要性状基因组选择策略的功能候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e1/12075139/54b6be213c32/fgene-16-1549284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验