Tebani Abdellah, Schmitz-Afonso Isabelle, Rutledge Douglas N, Gonzalez Bruno J, Bekri Soumeya, Afonso Carlos
Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA Rouen, CNRS, IRCOF, 1 Rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France; Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonatal Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France.
Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA Rouen, CNRS, IRCOF, 1 Rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France.
Anal Chim Acta. 2016 Mar 24;913:55-62. doi: 10.1016/j.aca.2016.02.011. Epub 2016 Feb 12.
High-resolution mass spectrometry coupled with pattern recognition techniques is an established tool to perform comprehensive metabolite profiling of biological datasets. This paves the way for new, powerful and innovative diagnostic approaches in the post-genomic era and molecular medicine. However, interpreting untargeted metabolomic data requires robust, reproducible and reliable analytical methods to translate results into biologically relevant and actionable knowledge. The analyses of biological samples were developed based on ultra-high performance liquid chromatography (UHPLC) coupled to ion mobility - mass spectrometry (IM-MS). A strategy for optimizing the analytical conditions for untargeted UHPLC-IM-MS methods is proposed using an experimental design approach. Optimization experiments were conducted through a screening process designed to identify the factors that have significant effects on the selected responses (total number of peaks and number of reliable peaks). For this purpose, full and fractional factorial designs were used while partial least squares regression was used for experimental design modeling and optimization of parameter values. The total number of peaks yielded the best predictive model and is used for optimization of parameters setting.
高分辨率质谱联用模式识别技术是对生物数据集进行全面代谢物谱分析的既定工具。这为后基因组时代和分子医学中新型、强大且创新的诊断方法铺平了道路。然而,解读非靶向代谢组学数据需要稳健、可重复且可靠的分析方法,以便将结果转化为具有生物学相关性且可付诸行动的知识。基于超高效液相色谱(UHPLC)与离子淌度-质谱(IM-MS)联用开展生物样品分析。采用实验设计方法,提出了一种优化非靶向UHPLC-IM-MS方法分析条件的策略。通过筛选过程进行优化实验,旨在识别对选定响应(峰总数和可靠峰数)有显著影响的因素。为此,使用了全因子设计和分数因子设计,同时使用偏最小二乘回归进行实验设计建模和参数值优化。峰总数产生了最佳预测模型,并用于参数设置的优化。