Brinkert Katharina, Le Formal Florian, Li Xiaoe, Durrant James, Rutherford A William, Fantuzzi Andrea
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
Biochim Biophys Acta. 2016 Sep;1857(9):1497-1505. doi: 10.1016/j.bbabio.2016.03.004. Epub 2016 Mar 3.
We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidizing enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence of exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed.
我们研究了从嗜热栖热放线菌中分离出的光系统II(PSII),即水氧化酶,固定在氧化铟锡电极上的纳米结构二氧化钛(TiO2/ITO)上时产生的光电流的性质。我们研究了PSII以单层与多层形式固定时、在存在和不存在与可交换醌(QB)位点结合的抑制剂时以及在存在和不存在外源移动电子载体(介质)时的光电流特性。研究结果表明,电子从第一个醌(QA)直接转移到电极表面,但通过纳米结构金属氧化物的电子转移是限速步骤。氧化还原介质通过将电子从纳米结构半导体表面转移到ITO电极表面而非从PSII获取电子来增强光电流。这通过使用不能从PSII接受电子的介质增强光电流得到了证明。这种电子转移模型也解释了文献中使用类似及相关系统报道的异常现象。TiO2中电子转移步骤的缓慢速率是由于注入半导体材料的电子能级低于导带。这限制了当前混合电极的实用性。文中讨论了克服这种动力学限制的策略。