Suppr超能文献

考虑细胞外基质成分的结构和力学贡献的动脉力学。

Arterial mechanics considering the structural and mechanical contributions of ECM constituents.

作者信息

Wang Yunjie, Zeinali-Davarani Shahrokh, Zhang Yanhang

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

J Biomech. 2016 Aug 16;49(12):2358-65. doi: 10.1016/j.jbiomech.2016.02.027. Epub 2016 Feb 24.

Abstract

Considering the organization and engagement behavior of different extracellular matrix (ECM) constituents in the medial and adventitial layer of the arterial wall, in this study, we proposed a new constitutive model of ECM mechanics that considers the distinct structural and mechanical contributions of medial elastin, medial collagen, and adventitial collagen, to incorporate the constituent-specific fiber orientation and the sequential fiber engagement in arterial mechanics. Planar biaxial tensile testing method was used to characterize the orthotropic and hyperelastic behavior of porcine thoracic aorta. Fiber distribution functions of medial elastin, medial collagen, and adventitial collagen were incorporated into the constitutive model. Considering the sequential engagement of ECM constituents in arterial mechanics, a recruitment density function was incorporated into the model to capture the delayed engagement of adventitial collagen. A freely jointed chain model was used to capture the mechanical behavior of elastin and collagen at the fiber level. The tissue-level ECM mechanics was obtained by incorporating fiber distribution, engagement, and elastin and collagen content. The multi-scale constitutive model considering the structural and mechanical contributions of the three major ECM constituents allows us to directly incorporate information obtained from quantitative multi-photon imaging and analysis, and biochemical assay for the prediction of tissue-level mechanical response. Moreover, the model shows promises in fitting and predicting with a small set of material parameters, which has physical meanings and can be related to the structure of the ECM.

摘要

考虑到动脉壁中层和外膜层中不同细胞外基质(ECM)成分的组织和参与行为,在本研究中,我们提出了一种新的ECM力学本构模型,该模型考虑了中层弹性蛋白、中层胶原蛋白和外膜胶原蛋白的不同结构和力学贡献,以纳入成分特异性纤维取向和动脉力学中的顺序纤维参与。采用平面双轴拉伸试验方法来表征猪胸主动脉的正交各向异性和超弹性行为。将中层弹性蛋白、中层胶原蛋白和外膜胶原蛋白的纤维分布函数纳入本构模型。考虑到ECM成分在动脉力学中的顺序参与,在模型中纳入了一个募集密度函数,以捕捉外膜胶原蛋白的延迟参与。使用自由连接链模型来捕捉弹性蛋白和胶原蛋白在纤维水平的力学行为。通过纳入纤维分布、参与以及弹性蛋白和胶原蛋白含量来获得组织水平的ECM力学。考虑到三种主要ECM成分的结构和力学贡献的多尺度本构模型使我们能够直接纳入从定量多光子成像和分析以及生化测定中获得的信息,以预测组织水平的力学响应。此外,该模型在使用一小组具有物理意义且可与ECM结构相关的材料参数进行拟合和预测方面显示出前景。

相似文献

1
Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
J Biomech. 2016 Aug 16;49(12):2358-65. doi: 10.1016/j.jbiomech.2016.02.027. Epub 2016 Feb 24.
2
Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics.
J Biomech. 2019 Jan 3;82:211-219. doi: 10.1016/j.jbiomech.2018.10.031. Epub 2018 Nov 1.
3
Transmural variation in elastin fiber orientation distribution in the arterial wall.
J Mech Behav Biomed Mater. 2018 Jan;77:745-753. doi: 10.1016/j.jmbbm.2017.08.002. Epub 2017 Aug 5.
5
Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics.
Biomech Model Mechanobiol. 2017 Feb;16(1):213-225. doi: 10.1007/s10237-016-0811-4. Epub 2016 Aug 4.
6
Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.
J Biomech Eng. 2015 May;137(5):051001. doi: 10.1115/1.4029637. Epub 2015 Feb 20.
7
Integrating structural heterogeneity, fiber orientation, and recruitment in multiscale ECM mechanics.
J Mech Behav Biomed Mater. 2019 Apr;92:1-10. doi: 10.1016/j.jmbbm.2018.12.023. Epub 2018 Dec 21.
8
Structural and Functional Differences Between Porcine Aorta and Vena Cava.
J Biomech Eng. 2017 Jul 1;139(7):0710071-8. doi: 10.1115/1.4036261.
9
Effect of glucose on the biomechanical function of arterial elastin.
J Mech Behav Biomed Mater. 2015 Sep;49:244-54. doi: 10.1016/j.jmbbm.2015.04.025. Epub 2015 May 14.

引用本文的文献

1
Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review.
Bioengineering (Basel). 2024 Jul 23;11(8):745. doi: 10.3390/bioengineering11080745.
2
Fabricating a Low-Cost, Microscopy-Compatible Mechanical Testing Device.
Exp Tech. 2022 Oct;46(5):731-743. doi: 10.1007/s40799-021-00513-w. Epub 2021 Sep 28.
3
Effect of Tear Size and Location on Supraspinatus Tendon Strain During Activities of Daily Living and Physiotherapy.
Ann Biomed Eng. 2024 Sep;52(9):2496-2508. doi: 10.1007/s10439-024-03538-5. Epub 2024 Jul 20.
4
An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta.
Front Bioeng Biotechnol. 2023 Nov 20;11:1301988. doi: 10.3389/fbioe.2023.1301988. eCollection 2023.
5
Contribution of Elastic and Collagen Fibers to the Mechanical Behavior of Bovine Nuchal Ligament.
Ann Biomed Eng. 2023 Oct;51(10):2204-2215. doi: 10.1007/s10439-023-03254-6. Epub 2023 Jun 7.
7
A Validated Three-Dimensional, Heterogenous Finite Element Model of the Rotator Cuff and The Effects of Collagen Orientation.
Ann Biomed Eng. 2023 May;51(5):1002-1013. doi: 10.1007/s10439-022-03114-9. Epub 2022 Dec 5.
8
Biomechanical Properties of Mouse Carotid Arteries With Diet-Induced Metabolic Syndrome and Aging.
Front Bioeng Biotechnol. 2022 Mar 22;10:862996. doi: 10.3389/fbioe.2022.862996. eCollection 2022.
9
Stress distribution in the walls of major arteries: implications for atherogenesis.
Quant Imaging Med Surg. 2021 Aug;11(8):3494-3505. doi: 10.21037/qims-20-614.

本文引用的文献

1
Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.
J Biomech Eng. 2015 May;137(5):051001. doi: 10.1115/1.4029637. Epub 2015 Feb 20.
2
Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
Acta Biomater. 2015 Mar;14:133-45. doi: 10.1016/j.actbio.2014.11.043. Epub 2014 Nov 29.
4
The effect of static stretch on elastin degradation in arteries.
PLoS One. 2013 Dec 16;8(12):e81951. doi: 10.1371/journal.pone.0081951. eCollection 2013.
5
Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review.
J R Soc Interface. 2013 Mar 27;10(83):20121004. doi: 10.1098/rsif.2012.1004. Print 2013 Jun 6.
7
Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation.
Ann Biomed Eng. 2013 Jul;41(7):1528-38. doi: 10.1007/s10439-012-0733-y. Epub 2013 Jan 8.
8
Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters.
Biophys J. 2012 Jun 20;102(12):2916-25. doi: 10.1016/j.bpj.2012.04.035. Epub 2012 Jun 19.
9
Progressive structural and biomechanical changes in elastin degraded aorta.
Biomech Model Mechanobiol. 2013 Apr;12(2):361-72. doi: 10.1007/s10237-012-0404-9. Epub 2012 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验