Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Chem Soc Rev. 2016 May 21;45(10):2724-39. doi: 10.1039/c5cs00330j. Epub 2016 Mar 7.
Technetium mainly forms during artificial nuclear fission; it exists primarily as TcO4(-) in nuclear waste, and it is among the most hazardous radiation-derived contaminants because of its long half-life (t1/2 = 2.13 × 10(5) years) and environmental mobility. The high water solubility of TcO4(-) (11.3 mol L(-1) at 20 °C) and its ability to readily migrate within the upper layer of the Earth's crust make it particularly hazardous. Several types of materials, namely resins, molecular complexes, layered double hydroxides, and pure inorganic and metal-organic materials, have been shown to be capable of capturing TcO4(-) (or other oxoanions) from solution. In this review, we give a brief description about the types of materials that have been used to capture TcO4(-) and closely related oxyanions so far and discuss the possibility of using metal-organic frameworks (MOFs) as next-generation ion-exchange materials for the stated application. In particular, with the advent of ultra-stable MOF materials, in conjunction with their chemical tunability, MOFs can be applied to capture these oxyanions under real-life conditions.
锝主要在人为核裂变过程中形成;它主要以 TcO4(-)的形式存在于核废料中,由于其半衰期长(t1/2 = 2.13 × 10(5)年)和环境迁移性,它是最具危害性的放射性衍生污染物之一。TcO4(-)的高水溶性(20°C 时为 11.3 mol L(-1))及其在地球地壳上层内易迁移的能力使其特别危险。已经证明,几种类型的材料,即树脂、分子配合物、层状双氢氧化物以及纯无机和金属有机材料,能够从溶液中捕获 TcO4(-)(或其他含氧阴离子)。在这篇综述中,我们简要描述了迄今为止用于捕获 TcO4(-)和密切相关的含氧阴离子的材料类型,并讨论了使用金属有机骨架(MOF)作为下一代离子交换材料用于上述应用的可能性。特别是,随着超稳定 MOF 材料的出现,以及它们的化学可调节性,MOF 可以在实际条件下用于捕获这些含氧阴离子。