Wang Jay Ching-Chieh, Campos-Möller Xavier, Shah Manjool, Sheybani Arsham, Ahmed Iqbal Ike K
From the Department of Ophthalmology and Vision Sciences (Wang, Campos-Möller, Ahmed), University of Toronto, Toronto, Ontario, Canada; Kellogg Eye Center (Shah), University of Michigan, Ann Arbor, Michigan, USA; Department of Ophthalmology and Visual Sciences (Sheybani), Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Trillium Health Partners (Ahmed), Mississauga, Ontario, Canada; Credit Valley EyeCare (Ahmed), Mississauga, Ontario, Canada.
From the Department of Ophthalmology and Vision Sciences (Wang, Campos-Möller, Ahmed), University of Toronto, Toronto, Ontario, Canada; Kellogg Eye Center (Shah), University of Michigan, Ann Arbor, Michigan, USA; Department of Ophthalmology and Visual Sciences (Sheybani), Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Trillium Health Partners (Ahmed), Mississauga, Ontario, Canada; Credit Valley EyeCare (Ahmed), Mississauga, Ontario, Canada.
J Cataract Refract Surg. 2016 Jan;42(1):132-7. doi: 10.1016/j.jcrs.2015.07.046.
To compare postoperative refractive outcomes in angle-closure eyes having phacoemulsification and intraocular lens (IOL) implantation with or without endocyclophotocoagulation (ECP).
Single tertiary-level ophthalmology practice.
Retrospective comparative study.
Primary angle-closure suspect (PACS), primary angle-closure (PAC), or primary angle-closure glaucoma (PACG) eyes that had phacoemulsification and IOL implantation with or without ECP from 2012 to 2014 were studied. Clinical data collected included axial length (AL), minimum and maximum keratometry (K) values, corneal powers, anterior chamber depth (ACD), corneal white-to-white (WTW), implanted IOL power, and postoperative manifest refraction. The Holladay 1 formula was used for IOL calculations. Primary and secondary outcome measures were the mean absolute error (MAE) and mean arithmetic error, respectively.
Sixty-eight eyes with ECP and 71 eyes without ECP were included. There were no statistically significant differences between the 2 groups in age, sex, eye side, ethnicity, AL, minimum or maximum keratometry values, ACD, WTW, or implanted IOL power. The MAE was lower in the non-ECP group (0.47 ± 0.32D versus 0.62 ± 0.43D; P = .0285). The mean arithmetic error showed a more myopic result in the ECP group (-0.54 ± 0.53D versus -0.26 ± 0.52D; P = .0017).
In this study, patients with PACS, PAC, or PACG having phacoemulsification and IOL implantation with ECP had decreased predictability of the postoperative refraction and a small myopic shift compared with those without ECP.
Dr. Ahmed is a consultant to Alcon, Advanced Medical Optics, Bausch & Lomb, and Carl Zeiss. None of the other authors has a proprietary or financial interest in any material or method mentioned.
比较行超声乳化白内障吸除联合人工晶状体(IOL)植入术的闭角型青光眼患者,在接受或未接受睫状体光凝术(ECP)时的术后屈光效果。
单一的三级眼科医疗机构。
回顾性比较研究。
研究2012年至2014年间接受超声乳化白内障吸除联合IOL植入术,且接受或未接受ECP的原发性闭角型青光眼可疑(PACS)、原发性闭角型青光眼(PAC)或原发性闭角型青光眼(PACG)患者。收集的临床数据包括眼轴长度(AL)、最小和最大角膜曲率(K)值、角膜屈光力、前房深度(ACD)、角膜白对白(WTW)、植入的IOL屈光力以及术后显验光。IOL计算采用Holladay 1公式。主要和次要观察指标分别为平均绝对误差(MAE)和平均算术误差。
纳入68例接受ECP的患者和71例未接受ECP的患者。两组在年龄、性别、患眼侧别、种族、AL、最小或最大角膜曲率值、ACD、WTW或植入的IOL屈光力方面无统计学显著差异。非ECP组的MAE较低(0.47±0.32D对0.62±0.43D;P = 0.0285)。平均算术误差显示ECP组的近视结果更明显(-0.54±0.53D对-0.26±0.52D;P = 0.0017)。
在本研究中,与未接受ECP的患者相比,接受超声乳化白内障吸除联合IOL植入术及ECP的PACS、PAC或PACG患者术后屈光预测性降低,且有小的近视偏移。
艾哈迈德医生是爱尔康、先进医学光学、博士伦和卡尔蔡司的顾问。其他作者均未对文中提及的任何材料或方法拥有专利或经济利益。