Kevenaar Josta T, Bianchi Sarah, van Spronsen Myrrhe, Olieric Natacha, Lipka Joanna, Frias Cátia P, Mikhaylova Marina, Harterink Martin, Keijzer Nanda, Wulf Phebe S, Hilbert Manuel, Kapitein Lukas C, de Graaff Esther, Ahkmanova Anna, Steinmetz Michel O, Hoogenraad Casper C
Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands.
Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
Curr Biol. 2016 Apr 4;26(7):849-61. doi: 10.1016/j.cub.2016.01.048. Epub 2016 Mar 3.
Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.
驱动蛋白运动蛋白通过控制细胞内货物运输和微管(MT)细胞骨架组织,在正常神经元发育中发挥着重要作用。调节驱动蛋白活性对于确保其正常功能很重要,其调节异常往往会导致严重的人类神经疾病。驱动蛋白结合蛋白(KBP)/KIAA1279中的纯合无义突变会导致神经疾病戈德堡-施普林岑综合征(GOSHS),其特征为智力残疾、小头畸形和轴索性神经病。在此,我们表明KBP通过与特定驱动蛋白亚群的运动结构域相互作用来调节驱动蛋白活性,以防止它们与MT细胞骨架结合。与KBP相互作用的驱动蛋白包括货物运输驱动蛋白,如驱动蛋白-3/KIF1A和MT解聚驱动蛋白驱动蛋白-8/KIF18A。我们发现KBP在培养的海马神经元和秀丽隐杆线虫PVD感觉神经元中阻断KIF1A/UNC-104介导的突触小泡运输。相反,KBP的缺失会导致KIF1A驱动蛋白和突触小泡在轴突生长锥中积累。我们还表明KBP通过控制KIF18A活性来调节神经元MT动力学。我们的数据表明KBP作为一种驱动蛋白抑制剂发挥作用,调节基于MT的货物运动性以及驱动蛋白运动蛋白亚群的解聚活性。我们提出,KBP控制的驱动蛋白运动蛋白调节异常可能代表了导致GOSHS患者神经病理缺陷的潜在分子机制。