Cho Hyunkeun, Hong Hyokyoung Grace, Kim Mi-Ok
Department of Statistics, Western Michigan University, Kalamazoo, MI 49008, USA.
Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA.
Biostatistics. 2016 Jul;17(3):561-75. doi: 10.1093/biostatistics/kxw007. Epub 2016 Mar 7.
In many biomedical studies independent variables may affect the conditional distribution of the response differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covariate effects on the conditional distribution of the response with quantile-specific regression coefficients. In this paper, we develop an empirical likelihood inference procedure for longitudinal data that accommodates both the within-subject correlations and informative dropouts under missing at random mechanisms. We borrow the matrix expansion idea of the quadratic inference function and incorporate the within-subject correlations under an informative working correlation structure. The proposed procedure does not assume the exact knowledge of the true correlation structure nor does it estimate the parameters of the correlation structure. Theoretical results show that the resulting estimator is asymptotically normal and more efficient than one attained under a working independence correlation structure. We expand the proposed approach to account for informative dropouts under missing at random mechanisms. The methodology is illustrated by empirical studies and a real-life example of HIV data analysis.
在许多生物医学研究中,与上尾或下尾相比,自变量对响应变量条件分布的影响在中间部分可能有所不同。分位数回归使用特定分位数的回归系数来评估各种协变量对响应变量条件分布的影响。在本文中,我们针对纵向数据开发了一种经验似然推断程序,该程序适用于随机缺失机制下的受试者内相关性和信息性失访情况。我们借鉴了二次推断函数的矩阵展开思想,并在信息性工作相关结构下纳入受试者内相关性。所提出的程序既不假设确切了解真实相关结构,也不估计相关结构的参数。理论结果表明,所得估计量渐近正态,并且比在工作独立相关结构下获得的估计量更有效。我们扩展了所提出的方法,以考虑随机缺失机制下的信息性失访情况。通过实证研究和HIV数据分析的实际例子说明了该方法。