Farcomeni Alessio, Viviani Sara
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00186, Italy.
Stat Med. 2015 Mar 30;34(7):1199-213. doi: 10.1002/sim.6393. Epub 2014 Dec 9.
We propose a joint model for a time-to-event outcome and a quantile of a continuous response repeatedly measured over time. The quantile and survival processes are associated via shared latent and manifest variables. Our joint model provides a flexible approach to handle informative dropout in quantile regression. A Monte Carlo expectation maximization strategy based on importance sampling is proposed, which is directly applicable under any distributional assumption for the longitudinal outcome and random effects. We consider both parametric and nonparametric assumptions for the baseline hazard. We illustrate through a simulation study and an application to an original data set about dilated cardiomyopathies.
我们提出了一个针对事件发生时间结局和随时间重复测量的连续响应分位数的联合模型。分位数和生存过程通过共享的潜在变量和显变量相关联。我们的联合模型提供了一种灵活的方法来处理分位数回归中的信息性缺失。提出了一种基于重要性抽样的蒙特卡罗期望最大化策略,该策略在纵向结局和随机效应的任何分布假设下都可直接应用。我们考虑了基线风险的参数和非参数假设。我们通过模拟研究和对一个关于扩张型心肌病的原始数据集的应用来说明。