Suppr超能文献

利用合成生物学让细胞成为未来的试管。

Using synthetic biology to make cells tomorrow's test tubes.

作者信息

Garcia Hernan G, Brewster Robert C, Phillips Rob

机构信息

Department of Molecular and Cell Biology, Department of Physics, Biophysics Graduate Group, and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA.

出版信息

Integr Biol (Camb). 2016 Apr 18;8(4):431-50. doi: 10.1039/c6ib00006a. Epub 2016 Mar 8.

Abstract

The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.

摘要

物理生物学的主要宗旨是,生物现象能够像物理学在无生命物质领域所提供的那样,得到同样的定量和预测性理解。然而,这些生物过程中许多固有的复杂性常常导致得出包含大量未知参数的复杂理论描述。这种复杂描述对建立预测生物学的坚实基础构成了概念上的挑战。在本文中,我们展示了各种令人兴奋的例子,说明合成生物学如何能够用于简化生物系统,并将这些现象提炼为其基本特征,以此作为实现对其进行理论描述的一种手段。在这里,合成生物学超越了以往改造自然的努力,成为一种让自然屈从以理解它的工具。我们讨论了各种近期和经典的实验,这些实验展示了这种合成方法在阐明从噬菌体感染到细菌及发育胚胎中的转录调控再到进化等一系列问题上的应用。在所有这些例子中,合成生物学提供了将细胞转变为等同于试管的机会,在其中生物现象能够被重构,并且我们的理论理解能够像在体外环境中研究这些相同现象一样轻松地得到检验。

相似文献

1
Using synthetic biology to make cells tomorrow's test tubes.
Integr Biol (Camb). 2016 Apr 18;8(4):431-50. doi: 10.1039/c6ib00006a. Epub 2016 Mar 8.
2
Nature versus design: synthetic biology or how to build a biological non-machine.
Integr Biol (Camb). 2016 Apr 18;8(4):451-5. doi: 10.1039/c5ib00239g. Epub 2015 Nov 30.
3
Synthetic Evolution of Metabolic Productivity Using Biosensors.
Trends Biotechnol. 2016 May;34(5):371-381. doi: 10.1016/j.tibtech.2016.02.002. Epub 2016 Mar 3.
4
Design specifications for cellular regulation.
Theory Biosci. 2016 Dec;135(4):231-240. doi: 10.1007/s12064-016-0239-5. Epub 2016 Nov 18.
5
Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy.
J Biotechnol. 2012 Jul 31;160(1-2):80-90. doi: 10.1016/j.jbiotec.2012.01.014. Epub 2012 Jan 25.
6
Selection platforms for directed evolution in synthetic biology.
Biochem Soc Trans. 2016 Aug 15;44(4):1165-75. doi: 10.1042/BST20160076.
7
What is synthetic biology?
Methods Mol Biol. 2013;1073:3-6. doi: 10.1007/978-1-62703-625-2_1.
8
Hierarchical modeling for synthetic biology.
ACS Synth Biol. 2012 Aug 17;1(8):353-64. doi: 10.1021/sb300033q. Epub 2012 Aug 10.
9
Using synthetic biology to explore principles of development.
Development. 2017 Apr 1;144(7):1146-1158. doi: 10.1242/dev.144196.
10
Overloaded and stressed: whole-cell considerations for bacterial synthetic biology.
Curr Opin Microbiol. 2016 Oct;33:123-130. doi: 10.1016/j.mib.2016.07.009. Epub 2016 Aug 2.

引用本文的文献

1
Optogenetic dissection of transcriptional repression in a multicellular organism.
Nat Commun. 2024 Oct 26;15(1):9263. doi: 10.1038/s41467-024-53539-0.
2
Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient.
Cell Syst. 2023 Mar 15;14(3):220-236.e3. doi: 10.1016/j.cels.2022.12.008. Epub 2023 Jan 24.
3
A synthetic synthesis to explore animal evolution and development.
Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200517. doi: 10.1098/rstb.2020.0517. Epub 2022 May 30.
4
6
LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live Embryos.
Cell. 2018 Jun 14;173(7):1810-1822.e16. doi: 10.1016/j.cell.2018.03.069. Epub 2018 May 10.

本文引用的文献

1
MULTIGENIC RESPONSE TO ETHANOL IN DROSOPHILA MELANOGASTER.
Evolution. 1981 Jan;35(1):1-10. doi: 10.1111/j.1558-5646.1981.tb04853.x.
2
Napoleon Is in Equilibrium.
Annu Rev Condens Matter Phys. 2015 Mar;6:85-111. doi: 10.1146/annurev-conmatphys-031214-014558.
3
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
4
Scaling of gene expression with transcription-factor fugacity.
Phys Rev Lett. 2014 Dec 19;113(25):258101. doi: 10.1103/PhysRevLett.113.258101. Epub 2014 Dec 16.
5
The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli.
PLoS One. 2014 Dec 30;9(12):e114347. doi: 10.1371/journal.pone.0114347. eCollection 2014.
6
Promoter architecture dictates cell-to-cell variability in gene expression.
Science. 2014 Dec 19;346(6216):1533-6. doi: 10.1126/science.1255301. Epub 2014 Dec 18.
7
The embryo as a laboratory: quantifying transcription in Drosophila.
Trends Genet. 2014 Aug;30(8):364-75. doi: 10.1016/j.tig.2014.06.002. Epub 2014 Jul 6.
9
The transcription factor titration effect dictates level of gene expression.
Cell. 2014 Mar 13;156(6):1312-1323. doi: 10.1016/j.cell.2014.02.022. Epub 2014 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验