Suppr超能文献

二氧化铈上二氧化碳加氢的机理与微观动力学分析

Mechanistic and microkinetic analysis of CO2 hydrogenation on ceria.

作者信息

Cheng Zhuo, Lo Cynthia S

机构信息

Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri, USA.

出版信息

Phys Chem Chem Phys. 2016 Mar 21;18(11):7987-96. doi: 10.1039/c5cp07469j.

Abstract

We use density functional theory (DFT) calculations to investigate the mechanism of CO2 hydrogenation to methanol on a reduced ceria (110) catalyst, which has previously been shown to activate CO2. Two reaction channels to methanol are identified: (1) COOH pathway via a carboxyl intermediate and (2) HCOO pathway via a formate intermediate. While formaldehyde (H2CO) appears to be the key intermediate for methanol synthesis, other intermediates, including carbine diol, formic acid and methanol, are not feasible due to their high formation energies. Furthermore, direct formyl hydrogenation to formaldehyde is not feasible due to its high activation barrier. Instead, we find that conversion of H-formalin (H2COOH*) to formaldehyde is kinetically more favorable. The formaldehyde is then converted to methoxy (H3CO*), and finally hydrogenated to form methanol. Microkinetic analyses reveal the rate-limiting steps in the reaction network and establish that the HCOO route is the dominant pathway for methanol formation on this catalyst.

摘要

我们使用密度泛函理论(DFT)计算来研究二氧化碳在还原氧化铈(110)催化剂上加氢制甲醇的反应机理,此前已证明该催化剂能活化二氧化碳。确定了两条生成甲醇的反应通道:(1)通过羧基中间体的COOH途径和(2)通过甲酸酯中间体的HCOO途径。虽然甲醛(H₂CO)似乎是甲醇合成的关键中间体,但其他中间体,包括二醇卡宾、甲酸和甲醇,由于其生成能量高而不可行。此外,由于甲酰基直接加氢生成甲醛的活化能垒高,所以该反应不可行。相反,我们发现H-甲醛(H₂COOH*)转化为甲醛在动力学上更有利。然后甲醛转化为甲氧基(H₃CO*),最后加氢生成甲醇。微观动力学分析揭示了反应网络中的速率限制步骤,并确定HCOO途径是该催化剂上甲醇生成的主要途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验