The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia.
The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, QLD 4072, Australia.
Acta Biomater. 2016 May;36:186-94. doi: 10.1016/j.actbio.2016.02.039. Epub 2016 Mar 5.
The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110μm in length, 10μm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively.
Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation.
在过去的二十年中,生物医学应用的微设备迅速出现,这给设备中使用的材料带来了新的挑战。像微针和纳米贴这样的设备需要足够的强度来刺穿皮肤,通常需要具有锋利、细长的微尺度轮廓,同时保持机械完整性。对于这些技术,我们试图解决两个重要问题:1)在设备操作的尺度上,刺穿皮肤需要多大的力?2)在失效之前,微针和突起物能承受多大的负载。首先,我们使用定制的纳米压痕微探针在微米尺度上刺穿皮肤,结果表明,对于新鲜的小鼠皮肤,刺穿力约为 0.25-1.75mN,与我们设备的有限元模拟结果一致。然后,我们使用两种方法对具有不同纵横比的纳米贴突起物进行强度测试。第一种方法是使用纳米压痕仪直接在单个硅突起物的顶部或侧面施加力(长度为 110μm,基底半径为 10μm),以测量断裂力。我们的第二种方法是使用英斯特朗(Instron)试验机断裂整排的突起物,并对一系列突起物设计进行了特征化(该方法通过与以前的纳米压痕实验进行验证)。最后,我们使用 cryo-扫描电子显微镜(Cryo-Scanning Electron Microscopy)对皮肤中的突起物进行原位可视化,定性地证实了我们量化的行为。
微设备的开发在过去十年中迅速增加,包括用于生物医学结果的与组织相互作用的设备。用于将疫苗递送到皮肤的微针领域既提出了对组织材料性能的理解方面的新的材料挑战,也提出了对设备材料的挑战。在这项工作中,我们对皮肤的生物材料特性和微突起疫苗输送设备的材料特性进行了表征。这项研究直接测量了皮肤的微观尺度穿刺特性,同时清楚地表明了这些特性如何与设备设计相关。这将对生物医学微设备领域的人具有强烈的兴趣。这包括可穿戴和半植入设备的工作,这将需要对组织行为和材料特性有清晰的了解。