The University of Queensland, Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia.
Biomaterials. 2010 Jun;31(16):4562-72. doi: 10.1016/j.biomaterials.2010.02.022. Epub 2010 Mar 11.
If skin's non-linear viscoelastic properties are mechanically exploited for precise antigen placement, there is tremendous promise for improved vaccines. To achieve this, we designed a Nanopatch-densely packed micro-nanoprojections (>20,000/cm(2)) to directly deposit antigen to large numbers of epidermal Langerhans cells and dermal dendritic cells. Here, we controllably applied our Nanopatches with discrete conditions between peak strain rates of approximately 100 s(-1)-7000 s(-1) and quantified resulting penetration depths, delivery payloads and skin mechanics. Increasing the strain rate of application, we overcame key skin variability, achieving increases in both projection penetration depth (by over 50% length) and area coverage of a full array (from 50% to 100%). This delivery depth precision opens the way for more fully utilizing the skin's immune function. Furthermore, we yielded new insights on mechanical behaviour of skin, including: 1) internal skin property changes that could affect/facilitate penetration; 2) projection design to dictate penetration depth; 3) puncture mechanics of skin in this strain rate range. Indeed, we show delivery of a model vaccine using our tested range of strain rates achieved functionally relevant tunable systemic antibody generation in mice. These findings could be of great utility in extending skin strata vaccine targeting approaches to human use.
如果皮肤的非线性黏弹性特性在机械上被用于精确放置抗原,那么改进疫苗将具有巨大的潜力。为了实现这一目标,我们设计了一种纳米贴,其密集排布的微纳米突起(>20,000/cm(2))可以直接将抗原递送至大量表皮朗格汉斯细胞和真皮树突状细胞。在这里,我们通过控制施加的纳米贴片,在大约 100 s(-1)-7000 s(-1)的峰值应变速率之间施加离散条件,并量化了由此产生的穿透深度、递送载药量和皮肤力学。通过增加施加的应变速率,我们克服了关键的皮肤变异性,实现了突起穿透深度(超过 50%长度)和整个阵列面积覆盖率(从 50%到 100%)的增加。这种递送深度精度为更充分利用皮肤的免疫功能开辟了道路。此外,我们对皮肤的力学行为有了新的认识,包括:1)可能影响/促进穿透的内部皮肤特性变化;2)决定穿透深度的突起设计;3)在该应变速率范围内的皮肤刺穿力学。事实上,我们使用经过测试的应变速率范围展示了一种模型疫苗的递送,在小鼠中实现了功能相关的可调节系统性抗体生成。这些发现对于将皮肤层疫苗靶向方法扩展到人类应用具有重要意义。