Wahabzada Mirwaes, Mahlein Anne-Katrin, Bauckhage Christian, Steiner Ulrike, Oerke Erich-Christian, Kersting Kristian
INRES-Phytomedicine, University of Bonn, Bonn, Germany.
Fraunhofer IAIS, Sankt Augustin, Germany.
Sci Rep. 2016 Mar 9;6:22482. doi: 10.1038/srep22482.
Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we "wordify" the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases.
基于光学传感器和信息技术的现代表型分析及植物病害检测方法,为植物研究和精准农业提供了有前景的途径。特别是,已发现高光谱成像能够揭示植物的生理和结构特征,并可追踪由环境影响导致的生理动态变化。在这项工作中,我们提出了一种植物表型分析方法,该方法整合了非侵入式传感器、计算机视觉以及数据挖掘技术,并能够监测植物对胁迫的反应。为了以一种可靠且易于理解的方式揭示患病植物潜在的高光谱特征,我们将高光谱图像“文本化”,即把图像转化为文本文档语料库。然后,我们应用概率主题模型,这是一种成熟的自然语言处理技术,用于识别文档的内容和主题。基于最近的正则化主题模型,我们证明可以自动追踪大麦的三种叶部病害的发展过程。我们还展示了主题的可视化,为植物科学家提供了一种用于高光谱成像的直观工具。简而言之,我们对症状发展和病害进展过程中发现的特征主题进行的分析和可视化,揭示了植物病害的高光谱语言。