Suppr超能文献

纳米零价铁结构转变对活性氧生成的影响。

Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.

作者信息

He Di, Ma Jinxing, Collins Richard N, Waite T David

机构信息

School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia.

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, People's Republic of China.

出版信息

Environ Sci Technol. 2016 Apr 5;50(7):3820-8. doi: 10.1021/acs.est.5b04988. Epub 2016 Mar 18.

Abstract

While it has been recognized for some time that addition of nanoparticlate zerovalent iron (nZVI) to oxygen-containing water results in both corrosion of Fe(0) and oxidation of contaminants, there is limited understanding of either the relationship between transformation of nZVI and oxidant formation or the factors controlling the lifetime and extent of oxidant production. Using Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we show that while nZVI particles are transformed to ferrihydrite then lepidocrocite in less than 2 h, oxidant generation continues for up to 10 h. The major products (Fe(II) and H2O2) of the reaction of nZVI with oxygenated water are associated, for the most part, with the surface of particles present with these surface-associated Fenton reagents inducing oxidation of a target compound (in this study, (14)C-labeled formate). Effective oxidation of formate only occurred after formation of iron oxides on the nZVI surface with the initial formation of high surface area ferrihydrite facilitating rapid and extensive adsorption of formate with colocation of this target compound and surface-associated Fe(II) and H2O2 apparently critical to formate oxidation. Ongoing formate oxidation long after nZVI is consumed combined with the relatively slow consumption of Fe(II) and H2O2 suggest that these reactants are regenerated during the nZVI-initiated heterogeneous Fenton process.

摘要

虽然一段时间以来人们已经认识到,向含氧水中添加纳米零价铁(nZVI)会导致Fe(0)的腐蚀和污染物的氧化,但对于nZVI的转化与氧化剂形成之间的关系,以及控制氧化剂产生的寿命和程度的因素,人们的了解有限。使用Fe K边扩展X射线吸收精细结构(EXAFS)光谱,我们发现虽然nZVI颗粒在不到2小时内转化为水铁矿然后再转化为纤铁矿,但氧化剂的生成会持续长达10小时。nZVI与含氧水反应的主要产物(Fe(II)和H2O2)在很大程度上与存在的颗粒表面相关,这些与表面相关的芬顿试剂会诱导目标化合物(在本研究中为(14)C标记的甲酸盐)的氧化。甲酸盐的有效氧化仅在nZVI表面形成铁氧化物后才发生,高比表面积水铁矿的初始形成促进了甲酸盐的快速和广泛吸附,这种目标化合物与表面相关的Fe(II)和H2O2的共定位显然对甲酸盐氧化至关重要。在nZVI消耗后很长时间内持续的甲酸盐氧化,再加上Fe(II)和H2O2相对较慢的消耗,表明这些反应物在nZVI引发的非均相芬顿过程中会再生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验