Fiorino Cara, Harrison Rene E
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
Bone. 2016 May;86:106-18. doi: 10.1016/j.bone.2016.03.004. Epub 2016 Mar 6.
E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities.
E-钙黏蛋白是一种负责上皮细胞间细胞黏附的蛋白质,在单核细胞/巨噬细胞谱系中也有表达。在本研究中,我们探讨了E-钙黏蛋白在核因子κB受体激活剂配体(RANKL)刺激的破骨细胞分化过程中的作用。破骨细胞生成包括前体细胞扩增阶段,随后是多次融合事件,以生成能够进行骨吸收的多核破骨细胞。我们研究了E-钙黏蛋白是否参与早期前体细胞的相互作用和识别,或者是否是破骨细胞融合机制的组成部分。在这里,我们表明内源性E-钙黏蛋白的表达在破骨细胞分化的早期阶段最高,在RAW 264.7细胞和原代巨噬细胞中的小前体细胞(每个细胞少于四个核)上可见表面表达。在融合开始前用中和抗体阻断E-钙黏蛋白的功能会延迟抗酒石酸酸性磷酸酶(TRAP)、组织蛋白酶K、树突状细胞特异性跨膜蛋白(DC-STAMP)和活化T细胞核因子c1(NFATc1)的表达,并显著减少多核破骨细胞的形成。相反,与对照巨噬细胞相比,过表达E-钙黏蛋白-绿色荧光蛋白(E-cadherin-GFP)的巨噬细胞显示出更早的NFATc1核转位以及更快的多核破骨细胞形成。通过实时成像,我们发现破坏E-钙黏蛋白的功能会延长前体细胞群体的增殖期,同时降低迁移前体细胞的比例。片状伪足和极化膜延伸似乎是融合的主要部位,表明前体细胞迁移是破骨细胞融合的关键因素。这些发现表明,E-钙黏蛋白介导的细胞间接触可以调节破骨细胞特异性基因表达,并促使分化中的破骨细胞前体进行迁移和融合活动。