Rabus Ralf, Boll Matthias, Golding Bernard, Wilkes Heinz
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
J Mol Microbiol Biotechnol. 2016;26(1-3):63-75. doi: 10.1159/000441144. Epub 2016 Mar 10.
The anaerobic degradation of 4-alkylbenzoates and 4-alkyltoluenes is to date a rarely reported microbial capacity. The newly isolated Alphaproteobacterium Magnetospirillum sp. strain pMbN1 represents the first pure culture demonstrated to degrade 4-methylbenzoate completely to CO2 in a process coupled to denitrification. Differential proteogenomic studies in conjunction with targeted metabolite analyses and enzyme activity measurements elucidated a specific 4-methylbenzoyl-coenzyme A (CoA) pathway in this bacterium alongside the classical central benzoyl-CoA pathway. Whilst these two pathways are analogous, in the former the p-methyl group is retained and its 4-methylbenzoyl-CoA reductase (MbrCBAD) is phylogenetically distinct from the archetypical class I benzoyl-CoA reductase (BcrCBAD). Subsequent global regulatory studies on strain pMbN1 grown with binary or ternary substrate mixtures revealed benzoate to repress the anaerobic utilization of 4-methylbenzoate and succinate. The shared nutritional property of betaproteobacterial 'Aromatoleum aromaticum' pCyN1 and Thauera sp. strain pCyN2 is the anaerobic degradation of the plant-derived hydrocarbon p-cymene (4-isopropyltoluene) coupled to denitrification. Notably, the two strains employ two different peripheral pathways for the conversion of p-cymene to 4-isopropylbenzoyl-CoA as the possible first common intermediate. In 'A. aromaticum' pCyN1 a putative p-cymene dehydrogenase (CmdABC) is proposed to hydroxylate the benzylic methyl group, which is subsequently further oxidized to the CoA-thioester. In contrast, Thauera sp. strain pCyN2 employs a reaction sequence analogous to the known anaerobic toluene pathway, involving a distinct branching (4-isopropylbenzyl)succinate synthase (IbsABCDEF).
4-烷基苯甲酸酯和4-烷基甲苯的厌氧降解是一种迄今鲜有报道的微生物能力。新分离出的α-变形菌磁螺菌属菌株pMbN1是首个被证明能在与反硝化作用耦合的过程中将4-甲基苯甲酸完全降解为二氧化碳的纯培养物。结合靶向代谢物分析和酶活性测量的差异蛋白质基因组学研究阐明了该细菌中一条特定的4-甲基苯甲酰辅酶A(CoA)途径以及经典的中心苯甲酰CoA途径。虽然这两条途径类似,但在前者中对甲基得以保留,其4-甲基苯甲酰-CoA还原酶(MbrCBAD)在系统发育上与典型的I类苯甲酰-CoA还原酶(BcrCBAD)不同。随后对在二元或三元底物混合物中生长的菌株pMbN1进行的全局调控研究表明,苯甲酸会抑制4-甲基苯甲酸和琥珀酸的厌氧利用。β-变形菌“芳香油环菌”pCyN1和陶厄氏菌属菌株pCyN2的共同营养特性是将植物源烃对伞花烃(4-异丙基甲苯)厌氧降解并与反硝化作用耦合。值得注意的是,这两种菌株采用两种不同的外周途径将对伞花烃转化为4-异丙基苯甲酰-CoA作为可能的首个共同中间体。在“芳香油环菌”pCyN1中,一种假定的对伞花烃脱氢酶(CmdABC)被认为可使苄基甲基羟基化,随后进一步氧化为CoA硫酯。相比之下,陶厄氏菌属菌株pCyN2采用与已知厌氧甲苯途径类似的反应序列,涉及一种独特的分支(4-异丙基苄基)琥珀酸合酶(IbsABCDEF)。