铁离子和硫酸盐促进产甲烷菌耦合烃类生物降解。
Methanogenesis coupled hydrocarbon biodegradation enhanced by ferric and sulphate ions.
机构信息
Department of Biotechnology, University of Szeged, Szeged, Hungary.
Biological Research Centre, Institute of Plant Biology, Hungarian Research Network, Szeged, Hungary.
出版信息
Appl Microbiol Biotechnol. 2024 Aug 29;108(1):449. doi: 10.1007/s00253-024-13278-0.
Bioremediation provides an environmentally sound solution for hydrocarbon removal. Although bioremediation under anoxic conditions is slow, it can be coupled with methanogenesis and is suitable for energy recovery. By altering conditions and supplementing alternative terminal electron acceptors to the system to induce syntrophic partners of the methanogens, this process can be enhanced. In this study, we investigated a hydrocarbon-degrading microbial community derived from chronically contaminated soil. Various hydrocarbon mixtures were used during our experiments in the presence of different electron acceptors. In addition, we performed whole metagenome sequencing to identify the main actors of hydrocarbon biodegradation in the samples. Our results showed that the addition of ferric ions or sulphate increased the methane yield. Furthermore, the addition of CO, ferric ion or sulphate enhanced the biodegradation of alkanes. A significant increase in biodegradation was observed in the presence of ferric ions or sulphate in the case of all aromatic components, while naphthalene and phenanthrene degradation was also enhanced by CO. Metagenome analysis revealed that Cellulomonas sp. is the most abundant in the presence of alkanes, while Ruminococcus and Faecalibacterium spp. are prevalent in aromatics-supplemented samples. From the recovery of 25 genomes, it was concluded that the main pathway of hydrocarbon activation was fumarate addition in both Cellulomonas, Ruminococcus and Faecalibacterium. Chloroflexota bacteria can utilise the central metabolites of aromatics biodegradation via ATP-independent benzoyl-CoA reduction. KEY POINTS: • Methanogenesis and hydrocarbon biodegradation were enhanced by Fe or SO4 • Cellulomonas, Ruminococcus and Faecalibacterium can be candidates for the main hydrocarbon degraders • Chloroflexota bacteria can utilise the central metabolites of aromatics degradation.
生物修复为去除碳氢化合物提供了一种环境友好的解决方案。虽然缺氧条件下的生物修复速度较慢,但它可以与产甲烷作用相结合,适合能量回收。通过改变条件并向系统中补充替代的末端电子受体,以诱导产甲烷菌的共生伙伴,可以增强这个过程。在这项研究中,我们研究了一种源自长期污染土壤的烃类降解微生物群落。在不同电子受体存在的情况下,我们在实验中使用了各种烃类混合物。此外,我们进行了全基因组测序,以确定样品中烃类生物降解的主要参与者。我们的结果表明,添加铁离子或硫酸盐可以提高甲烷产量。此外,添加 CO、铁离子或硫酸盐可以增强烷烃的生物降解。在添加铁离子或硫酸盐的情况下,所有芳香族成分的生物降解都显著增加,而 CO 也增强了萘和菲的降解。宏基因组分析表明,在存在烷烃的情况下,纤维单胞菌属的丰度最高,而补充芳香族物质的样品中则以瘤胃球菌属和粪杆菌属为主。从 25 个基因组的回收中得出结论,在纤维单胞菌属、瘤胃球菌属和粪杆菌属中,烃类激活的主要途径是富马酸的添加。绿弯菌门的细菌可以通过 ATP 非依赖性苯甲酰辅酶 A 还原利用芳烃生物降解的中心代谢物。关键点:
Fe 或 SO4 的存在促进了产甲烷作用和烃类生物降解
纤维单胞菌属、瘤胃球菌属和粪杆菌属可能是主要烃类降解菌的候选者
绿弯菌门的细菌可以利用芳烃降解的中心代谢物。