Naas Thierry, Dortet Laurent, Iorga Bogdan I
Service de Bactériologie- Hygiène, Hôpital de Bicêtre, APHP, EA7361, Faculté de Médecine Paris- Sud, LabEx LERMIT, Le Kremlin-Bicêtre, France.
Curr Drug Targets. 2016;17(9):1006-28. doi: 10.2174/1389450117666160310144501.
The fight against infectious diseases is probably one of the greatest public health challenges faced by our society, especially with the emergence of carbapenem-resistant gram-negatives that are in some cases pan-drug resistant. Currently,β-lactamase-mediated resistance does not spare even the newest and most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The worldwide dissemination of carbapenemases in gram-negative organisms threatens to take medicine back into the pre-antibiotic era since the mortality associated with infections caused by these "superbugs" is very high, due to limited treatment options. Clinically-relevant carbapenemases belong either to metallo-β- lactamases (MBLs) of Ambler class B or to serine-β-lactamases (SBLs) of Ambler class A and D enzymes. Class A carbapenemases may be chromosomally-encoded (SME, NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38), plasmid-encoded (KPC, GES, FRI-1) or both (IMI). The plasmid-encoded enzymes are often associated with mobile elements responsible for their mobilization. These enzymes, even though weakly related in terms of sequence identities, share structural features and a common mechanism of action. They variably hydrolyse penicillins, cephalosporins, monobactams, carbapenems, and are inhibited by clavulanate and tazobactam. Three-dimensional structures of class A carbapenemases, in the apo form or in complex with substrates/inhibitors, together with site-directed mutagenesis studies, provide essential input for identifying the structural factors and subtle conformational changes that influence the hydrolytic profile and inhibition of these enzymes. Overall, these data represent the building blocks for understanding the structure-function relationships that define the phenotypes of class A carbapenemases and can guide the design of new molecules of therapeutic interest.
抗击传染病可能是我们社会面临的最大公共卫生挑战之一,尤其是随着耐碳青霉烯革兰氏阴性菌的出现,在某些情况下这些细菌对多种药物耐药。目前,β-内酰胺酶介导的耐药性甚至连最新、最强大的β-内酰胺类药物(碳青霉烯类)也不放过,其活性受到碳青霉烯酶的挑战。碳青霉烯酶在革兰氏阴性菌中的全球传播有可能使医学倒退到抗生素前时代,因为这些“超级细菌”引起的感染相关死亡率很高,原因是治疗选择有限。临床相关的碳青霉烯酶要么属于安布勒B类金属β-内酰胺酶(MBLs),要么属于安布勒A类和D类丝氨酸β-内酰胺酶(SBLs)。A类碳青霉烯酶可能由染色体编码(SME、NmcA、SFC-1、BIC-1、PenA、FPH-1、SHV-38)、质粒编码(KPC、GES、FRI-1)或两者皆有(IMI)。质粒编码的酶通常与负责其转移的移动元件相关。这些酶尽管在序列同一性方面关系较弱,但具有共同的结构特征和作用机制。它们能不同程度地水解青霉素、头孢菌素、单环β-内酰胺类、碳青霉烯类,并且受克拉维酸和他唑巴坦抑制。A类碳青霉烯酶的三维结构,无论是无活性形式还是与底物/抑制剂结合的形式,再加上定点诱变研究,为确定影响这些酶水解特征和抑制作用的结构因素及细微构象变化提供了重要信息。总体而言,这些数据是理解定义A类碳青霉烯酶表型的结构-功能关系的基石,可指导具有治疗意义的新分子的设计。